Supplementary Material:

Table 1. Sequence ID for B56 isoforms					
% Identity	Β56α	B56 β	Β56γ	B56 δ	Β56 ε
Β56α	100	77.3	63.6	66.1	67.9
Β56β	77.3	100	63.1	63.1	66.3
Β56γ	63.6	63.1	100	69.4	71.7
Β56δ	66.1	63.1	69.4	100	77.5
Β56ε	67.9	66.3	71.7	77.5	100

Fig 1. Assembly of PP2A heterotrimers. (A) $B56\beta$ PP2A complex was assembled using individually expressed and purified PP2A subunits. The heterotrimeric complex was purified using size-exclusion chromatography. All three subunits co-sediment as a complex as confirmed by SDS-PAGE. (B) PP2A heterotrimeric complexes were imaged using cryo-EM. Processing of individual particles reveals high resolution features in the 2D class averages.

Fig 2. B56 β and B56 γ behave differently in vitro. SPR data demonstrate that purified (A) B56 β has a significantly reduced binding affinity and accelerated off-rate for the PP2A AC core complex as compared to (B) B56 γ . (C) Cumulative binding data for B56 α and B56 γ .

Fig 3. Cryo-EM reconstruction of the B56 γ containing PP2A heterotrimeric complex. (A) The 3D structure of the B56 γ -containing PP2A complex was solved to an average resolution of 3.8Å. The B56 γ subunit is colored blue, the catalytic C-subunit is orange, and the scaffold A-subunit is blue. Arrow indicates a 90o rotation of the structure. (B) Models of different regions fit into the cryo-EM density reveals secondary structure, along with several amino acid side-chains.