

# Structural Information of ligands with electron diffraction

NYSBC, SEMC and NCCAT MicroED Short Course 3<sup>rd</sup> November 2025

Dr. Tim Grüne

Core Facility Crystal Structure Analysis

Faculty of Chemistry

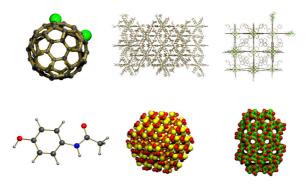
University of Vienna

tim.gruene@univie.ac.at





# **Contents**


| 1 | Crystal structure                                | 3  |
|---|--------------------------------------------------|----|
| 2 | Crystallography with electrons instead of X-rays | 14 |
| 3 | Ligand structures with ED                        | 22 |



# 1 Crystal structure



#### 3D models of molecules



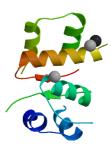
- What: position (and ADPs) of atoms in molecules
- Why: to understand chemical and biological properties of compounds, materials, drugs, ...



### RNA Polymerase II: Crystal "Snapshots"



Several structures of RNA Polymerase II in different states of action lead to a concept of the mode of function.


Pol II Elongation Complex

(Brueckner F et al.: "A movie of the RNA polymerase nucleotide addition cycle." Curr Opin Struct Biol 19, 294-299 (2009).) Courtesy P. Cramer, MPI Göttingen



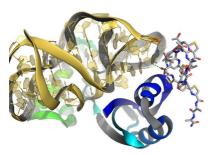
# **Insulin: Quality Control**

- 1982: production of recombinant human insulin (improvement of tolerance compared to bovine insulin)
- recombinant and purified human insulin structurally identical
- structure based point-mutations of insulin improve functionality (e.g. rate of release). An extensive list can be found at https://en.wikipedia. org/wiki/Insulin\_analogue





### **Small Molecules: Handedness and Purity**


http://de.wikipedia.org/wiki/Methylphenidat

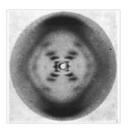
- Methylphenidate (aka Ritalin): drug to treat attention-deficit hyperactivity disorder (ADHD)
- Contains two stereochemical centres, i.e. there are four different forms
- Often only one form has the desired effect, others often contribute to (undesired) sideeffects [1]

Crystallography is the only experimental technique to determine absolute chirality.



# Structure Guided Drug Design



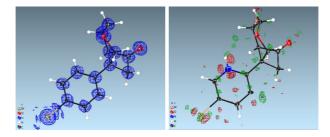

The antibiotic Thiostrepton in contact with its target DNA. Image courtesy Dr. K. Pröpper.

Atomic coordinates for ligand and target enable

- fine-tuning of contact
- fine-tuning of shape: influence mode of function and access towards target.



#### **DNA** Double Helix




- X-ray image of fibrous, crystalline DNA by R. Franklin, which led her with co-workers and Watson/Crick to the double-helical structure of DNA
- The model is often considered the "birth of modern molecular biology" (Voet & Voet, Biochemistry (1995), Wiley & Sons).



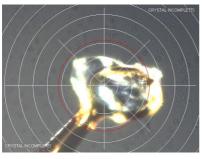
#### The crystallographic map

- A diffraction experiment produces a map within the unit cell of the crystal
- The chemical model is built into the map based on chemical and biological reason
- the difference map indicates discrepancy between the model and the map





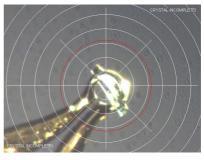
#### How to get to the structure


Data collection is your last experiment

(Zbigniew Dauter, National Cancer Institute [2])

- 1. grow crystals: can be the bottleneck
- 2. collect diffraction data: high availability of synchrotrons and lab sources
- 3. solving the structure, alias phasing: critical, usually not too difficult
- 4. model building and refinement: requires biological and crystallographic knowledge
- 5. validation: very important!!! requires crystallographic knowledge




# X-ray Crystal gallery

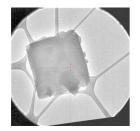


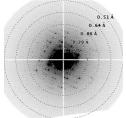
#### convenient

 $250\times200\times150\mu\text{m}^3$ 

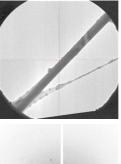
exposure:  $4s/^{\circ}$ 

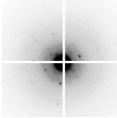



#### small


 $26\times40\times180\mu\mathrm{m}^3$ 

exposure:  $32s/^{\circ}$ 





# **ED** Crystal gallery

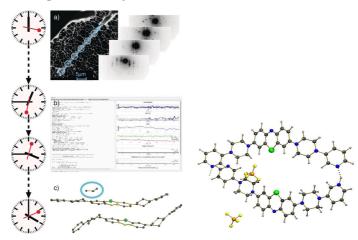




 $1.7 \times 1.7 \times 0.5 \mu \text{m}^3$  exposure:  $2.2s/^\circ$ 



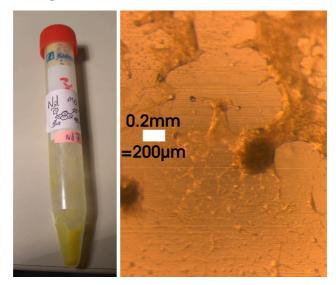



 $2.4 \times 0.2 \times 0.2 \mu \text{m}^3$  exposure:  $2.4s/^{\circ}$ 



# 2 Crystallography with electrons instead of X-rays

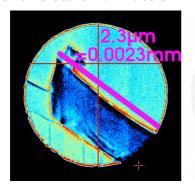


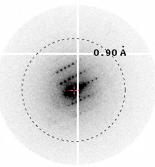

# **ED: Stronger than Synchrotron**



- Structure of a methylene blue derivative (G. Clever, J. H. Holstein, R. Ireni, TU Dortmund)
- Gruene et al (2018), [3]




# Needles are great for ED

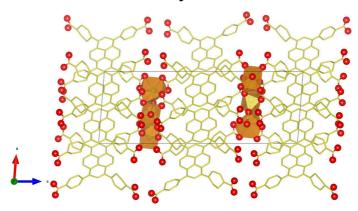



Sample courtesy Jia-Min Chin & Michael Reithofer, photographs courtesy A. Roller



#### Powerful electron diffraction






Sample preparation: A. Roller & N. Gajic

At DESY, the strongest X-ray source in the world, this crystal would probably not show any diffraction.

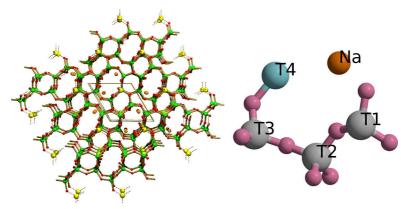


#### Nd-MOF structure from 5 crystals



Courtesy Jia Min Chin & Michael Reithofer, unpublished data

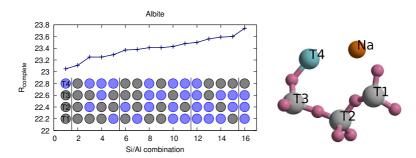
- Room temperature measurement, under vacuum
- R1=33.7 %
- unusual briding of COOH-groups




#### R1-factor woes

- Crystallographic R1-factor measures fit between model and data
- R1=3%: good, R1=7%: ok'ish, R1=12 %: what's wrong?
- Electron diffraction: R1: 15–25 % ...
- high R-factors in electron diffraction might indicate unreliable structures and suggest that structure interpretation is not very meaningful. But ...:




#### **ED tells Aluminum from Silicon**

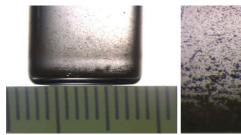


Aluminosilicate Albite contains four T-sites: T1–T3 are  $Si^{IV}$ , T4 is  $Al^{III}$ , bridged tetrahedrically by oxygen.  $Na^+$ : counter-ion compensates  $Al^{III}$ 



#### **ED tells Aluminum from Silicon**




- Each T-site refined as Si or Al:  $2^4 = 16$  possibilities
- R<sub>complete</sub> varies between 23 % and 24 %.
- Unreliable?— No: The  $R_{complete}$  increases with number of mis-assigned T-sites [4]



# 3 Ligand structures with ED

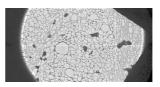


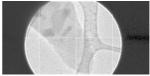
#### Submicrometer sized crystals





Sample ChWi629, Wittmann et al. [5]

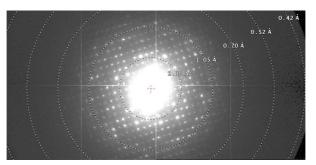

- crystals thickness should be  $<1~\mu m$
- crystals invisible with light microscope
- crystals should be sufficiently isolated to avoid multiple lattices
- crystals should be sufficiently dense to avoid excessive search duration




## Making crystals small

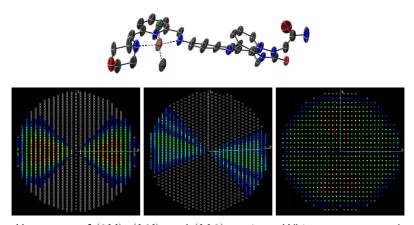
- Often, crystals are still too big for ED.
- Vortex vial with grid







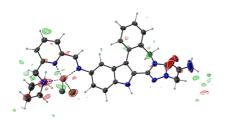

Compatible with dry samples and with suspensions Sonication in "anti-"solvent (water, n-hexane, ...)




# Strong diffraction for ChWi629






# Missing wedge for ChWi629



Heat maps of (0kl), (h0l), and (hk0) sections. White: not measured



#### **Details in Structure ChWi629**



R1 (all) = 
$$23.91 \%$$
  
R1 (strong) =  $18.91 \%$   
wR2 =  $48.23 \%$ 



# OMIT \$H: R1 (all) = 25.50 % R1 (strong) = 20.84 % wR2 = 51.70 %

#### Ligand Structures with ED



# **Summary: Features of Electron diffraction**

| X-rays                               | ED                                   |
|--------------------------------------|--------------------------------------|
| poor interaction with matter, crys-  | Crystals can and must be small       |
| tal dimensions $\gg 1 \mu \text{m}$  | (thin): $\leq 1\mu m$                |
| light atoms (H, Li) are overwhelmed  | H, Li can be detected more easily[6] |
| by the signal of heavy atoms.        |                                      |
| Chirality: standard method, but can  | More powerful for determination of   |
| be tricky                            | absolute chirality [7]               |
| X-rays interact with electrons only: | differentiation of oxidation states, |
| we measure the "electron density     | partial charges [8, 9, 10]           |
| map".                                |                                      |



# Acknowledgements

- Soheil Mahmoudi, Kiyofumi Takaba, Steven van Terwingen, Katarina Stastna, Ronja Schwesig, Alexander Prado-Roller
- Erik Frojdh, Khalil Ferjaoui, Bernd Schmitt, et al. (PSI Detector Group)
- Julian T. C. Wennmacher, Jeroen A. v. Bokhoven, et al. (ETH Zurich)
- and so many more



#### References

- E. J. Ariëns. 'Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology'. In: Eur. J. Clin. Pharmacol. 26 (1984), pp. 663–668.
- Zbigniew Dauter. 'Data-collection strategies'. In: Acta Crystallogr. D55 (1999),pp. 1703–1717. DOI: 10.1107/S0907444999008367.
- [3] Tim Gruene et al. 'Rapid structure determination of microcrystalline molecular compounds using electron diffraction'. In: *Angew. Chem., Int. Ed.* 57 (2018), pp. 16313–16317. DOI: 10.1002/anie.201811318.
- [4] E. Fröjdh et al. 'Discrimination of Aluminum from Silicon by Electron Crystallography with the JUNGFRAU Detector'. In: Crystals 10 (2020), p. 1148. DOI: 10.3390/cryst10121148.
- [5] Christopher Wittmann et al. 'Latonduine-1-Amino-Hydantoin Hybrid, Triazole-Fused Latonduine Schiff Bases and Their Metal Complexes: Synthesis, X-ray and Electron Diffraction, Molecular Docking Studies and Antiproliferative Activity'. In: *Inorganics* 11 (2023). DOI: 10.3390/inorganics11010030.
- [6] L. Palatinus et al. 'Hydrogen positions in single nanocrystals revealed by electron diffraction'. In: *Science* 355 (2017), pp. 166–169.

#### Ligand Structures with ED



- [7] Petr Brázda, Lukáš Palatinus and Martin Babor. 'Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal'.
  In: Science 364 (2019), pp. 667–669.
- [8] Koji Yonekura et al. 'lonic scattering factors of atoms that compose biological molecules'. In: *IUCrJ* 5 (2018), pp. 348–353. DOI: 10.1107/S2052252518005237.
- [9] Soheil Mahmoudi et al. 'Experimental determination of partial charges with electron diffraction'. In: Nature (2025). DOI: 10.1038/s41586-025-09405-0. URL: https://doi.org/10.1038/s41586-025-09405-0.
- [10] Ashwin Suresh et al. 'Ionisation of atoms determined by kappa refinement against 3D electron diffraction data'. In: *Nat. Commun.* 15 (2024), p. 9066. DOI: 10.1038/s41467-024-53448-2.