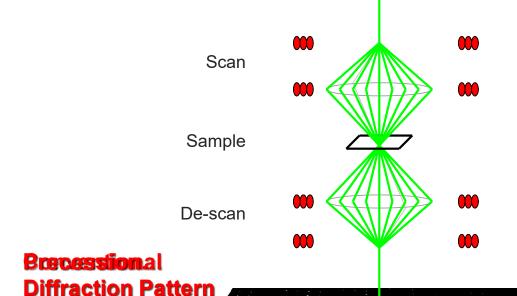

Nanomegas 3D ED/MicroED Solutions and Recent Advances in PrecessionAssisted Serial Electron Diffraction

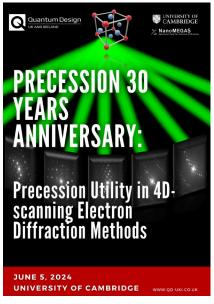
Dr. Partha Pratim Das


Application Specialist, Nanomegas SPRL, Belgium partha@nanomegas.com

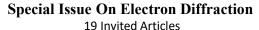
MicroED Short Course November 3-5, 2025

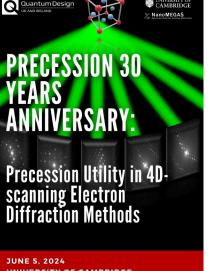
Precession Electron Diffraction

Northwestern ENGINEERING Courtesy: C. Own & L. Marks


With Precession:

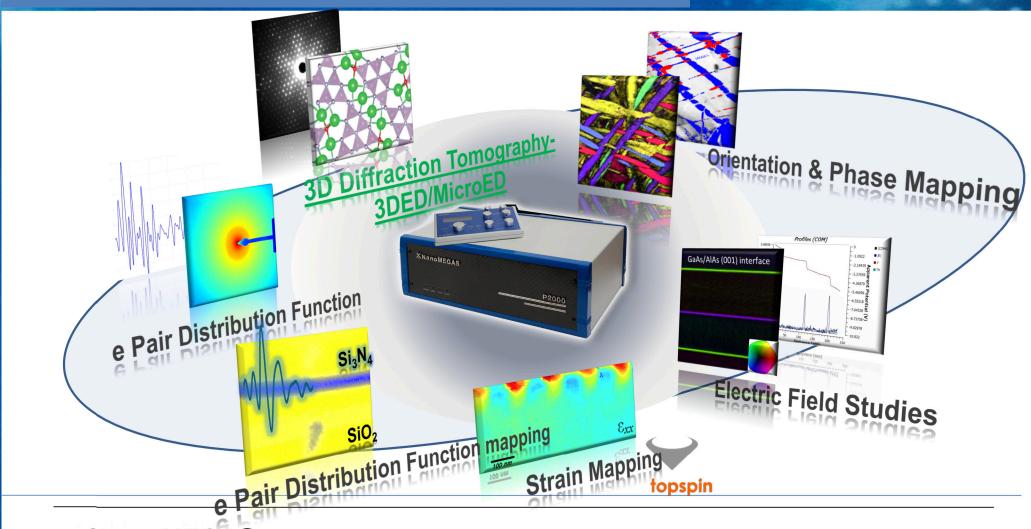
- Higher resolution


 Access to higher order reflections
- Reduction of dynamical effect

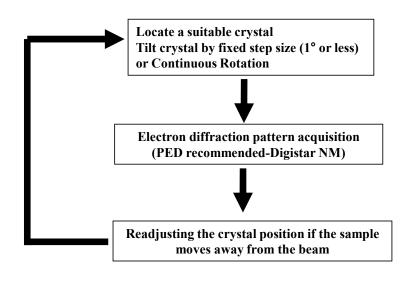

 Close to kinematical reflections
 - Less sensitivity to specimen thickness / bending

> 1000 articles in 21 years based on the provided solutions

Innovative electron diffraction solutions for amorphous materials and electrochemistry



Partner

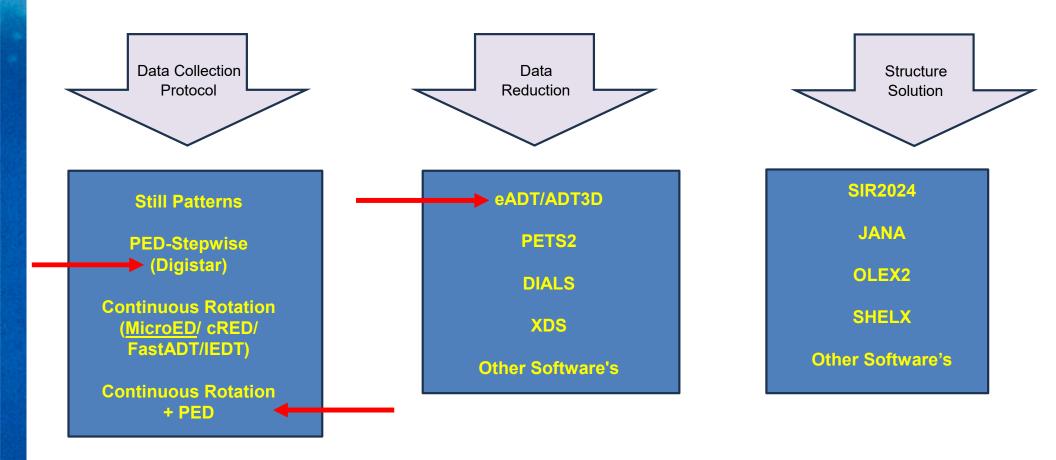


NanoMEGAS Electron Diffraction Solutions - 330+ installations

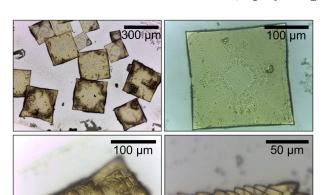
3D ED Data Acquisition in TEM

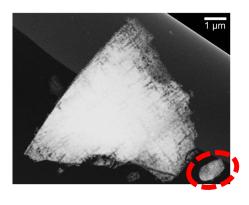
ADT <u>U. Kolb et al., *Ultramicroscopy* 107, 507 -513 (2007)</u>

PEDT Mugnaioli et al., *Ultramicroscopy* 109, 758 -765 (2009)


Micro-ED/ cRED/FADT/IEDT Nederlof et al., Acta Crystallogr. D 69, 1223-1230 (April, 2013); Shi et al. eLife eLifee01345 (Nov, 2013)

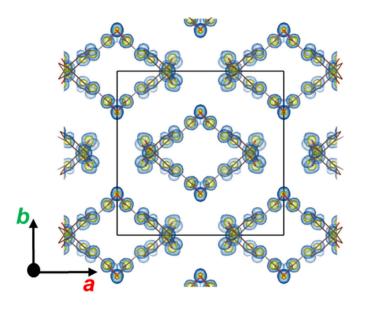
ACS Cent. Sci. 2019, 5, 1315-1329




Data Collection to Structure Solution Where NM Solution Helps

One Example Among Many Structures Solved with Stepwise Precession Assisted 3DED

Structure of Orthocetamol (C₈H₉NO₂)- Its structure was still unknown in 2019!


The Crystal Structure of Orthocetamol Solved by 3D Electron Diffraction. Andrusenko et al. *Angew Chem Int Ed* **58**, 10919 (2019).

Resolution = 0.9Å, Coverage (ind. refl.) = 97%, $R_{int}(F) = 28.45\%$

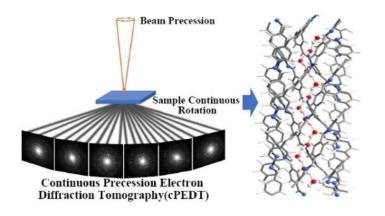
Kinematical refinement converged at $R1(4\sigma) = 37.31\%$

After the introduction of a rotational **twinning** that exchanges \boldsymbol{a} and \boldsymbol{b} , refinement converged at $R1(4\sigma) = 32.70\%$ (twinning contribution 34%)

a = 10.56Å, b = 10.39Å, c = 13.72Å, $\beta = 93.11$ ° C2/c

<u>Stepwise PED</u> was used for data acquisition due to the small domain size.

The twinned domains are smaller than the 150 nm diameter beam used for 3D ED data acquisition


Combination of PED + Continuous Rotation – Example 1

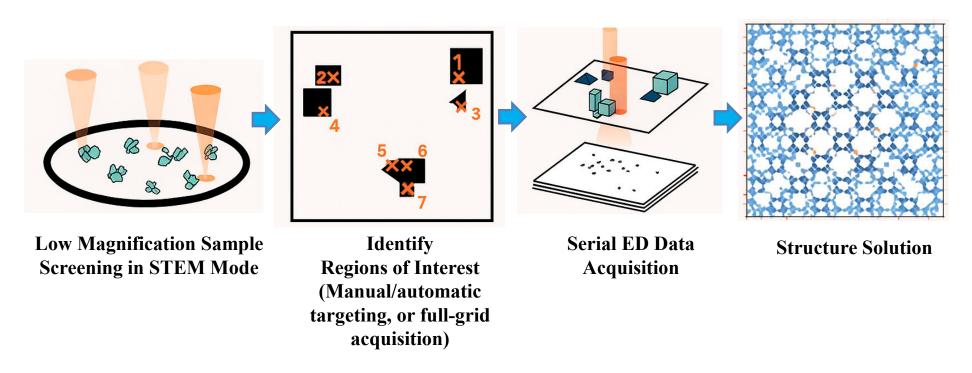
Locating Hydrogen Positions for COF-300 by Cryo-3D Electron Diffraction

Sun et al. (Angew Chem. Int. Ed., 2023)

Comparison of the data collected between <u>Continuous Rotation +</u> PED VS Continuous Rotation Only

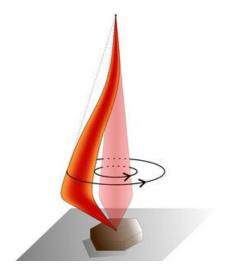
	*										
Particle name	The type of data collection	Rint/ %	The number of hydrogen atoms found	R ₁ value/ %							
1	cPEDT	15.39	7	19.87							
	cRED	27.83	7	20.28							
2	cPEDT	14.87	6	22.52							
	cRED	16.44	5	22.55							
3	cPEDT	27.30	3	21.92							
	cRED	38.62	3	26.39							
4	cPEDT	43.02	Ī	31.87							
	cRED	49.26	1	27.60							
5	cPEDT	22.33	5	25.30							
	cRED	43.34	3	29.30							

Lower R(int), More No of H atoms found during Kinematic refinement, Lower Refined R value with Continuous Rotation + PED data


Combination of PED + Continuous Rotation – Example 2

Crystal	10			07		13		09		11		12			
				Continuous Rot		tation + PED VS Continuous Rotat			ition						
Acquisition Method	Cont	Prec&Cont	Prec&Cont	Cont	Prec&Cont	Prec&Cont	Cont	Prec&Cont	Prec&Cont	Prec&Cont	Prec&Cont	Prec&Cont	Prec&Cont	Prec&Cont I	Prec&Cont
Integration Method	Profile fit	Profile fit	Integration	Profile fit	Profile fit	Integration	Profile fit	Profile fit	Integration	Profile fit	Integration	Profile fit	Integration	Profile fit 1	ntegration
Tilt range (°)	109	1:	22	114	9	7	118	12	20	11	12	1	03	96	į
N. of stitched tilt series	3	:	2	3	2	2	2	4	ļ.	2	2	:	2	1	
Cell Parameter a (Å)	26.85(1)	26.6	52(1)	26.77(1)	26.7	4(1)	26.816(1)	26.72	21(1)	26.7	7(1)	26.7	36(1)	26.86	6(1)
Cell Parameter c (Å)	7.553(4)	7.65	52(3)	7.538(5)	7.58	9(3)	7.601(5)	7.61	8(3)	7.58	7(3)	7.63	33(3)	7.622	2(5)
N. reflections	12926	18701	18784	17148	15033	15319	17579	17972	18289	17151	17455	15239	15504	14104	14374
N. independent reflections	6038	6825	6832	6185	6096	6211	7352	7376	7415	6067	6186	6918	6986	6022	6138
N. reflecton $> 2\sigma$	507	3178	5539	998	2663	4811	1109	1280	3072	2912	5021	2352	3900	1556	2613
R _{int}	1.0831	0.3164	0.2690	0.5957	0.2766	0.2629	0.6955	0.5874	0.3926	0.4186	0.3816	0.3682	0.3321	0.3952	0.4026
R1(all)	0.7256	0.4200	0.3847	0.5667	0.4759	0.4018	0.6170	0.5835	0.4881	0.5206	0.4482	0.5093	0.4330	0.5039	0.4528
R1(obs)	0.6565	0.3375	0.3716	0.3492	0.4216	0.3882	0.4905	0.3944	0.4108	0.4898	0.4404	0.4119	0.3686	0.3719	0.3652
wR2(all)	0.8863	0.6221	0.6477	0.7188	0.6802	0.6661	0.8053	0.7319	0.7095	0.7334	0.7006	0.6995	0.6650	0.7171	0.6955
wR2(obs)	0.8185	<u>0.5865</u>	0.6389	0.6225	0.6520	0.6477	0.7324	0.6473	0.6729	0.7162	0.6954	0.6548	0.6386	0.6573	0.6471
Atoms (C,N) found ab-initio	no solution	20	20	no solution	no solution	18	no solution	no solution	17	no solution	no solution	19	20	no solution	19

It is considered the structure is solved when one can recognize most of the C and N atoms (total 20). Group of 10 B atoms is difficult to recognize ab-initio and it is very distorted, so it was not used as a criteria. (To be Published Das et al.)


A New Method For Data Collection and Structure Solution - Serial Electron Diffraction

Smeets et al., J Appl Cryst, 2018, Bücker et al., Nature Commun. 2020, Hogan-Lamarre et al., IUCrJ, 2024

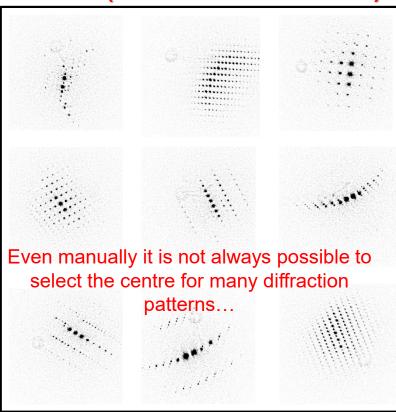
New Trend - Precession-Assisted Serial Electron Diffraction

Precession can help achieve better integration of reflections
 It reduces dynamical effects, leading to more reliable intensity measurements
 This enables <u>structure analysis with fewer diffraction patterns</u>
 It may also allow dynamical refinement for improved structural accuracy

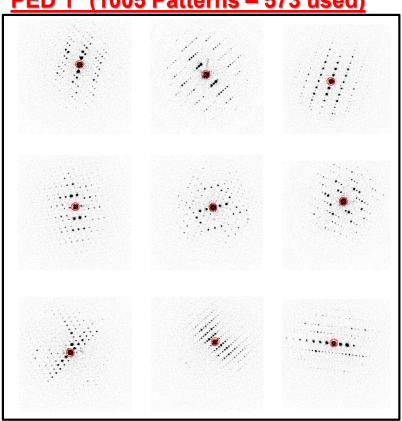
Received 14 April 2025 Accepted 20 June 2025 On the use of beam precession for serial electron crystallography

Sergi Plana-Ruiz, ^{a,bs} Penghan Lu,^c Govind Ummethala^c and Rafal E. Dunin-Borkowski^c

*Servei de Recursos Cientifics i Tecnics, Universitat Rovira i Virgili, Avinguda Paños Catalana 26, Tarragona, Catalonia 43007, Spain, *LRNS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Martí i Franquès I, Barcelona, Catalonia 1802.8, Spain, and *Trinst Ruska-Cente for Microscopy and Spectroscopy with Electrons, Forschungszentrum [Bilich, Wilhelm-Johnen-Strasse, Bilich 52425, Germany, *Correspondence e-mail: sergia plana@urx.cat

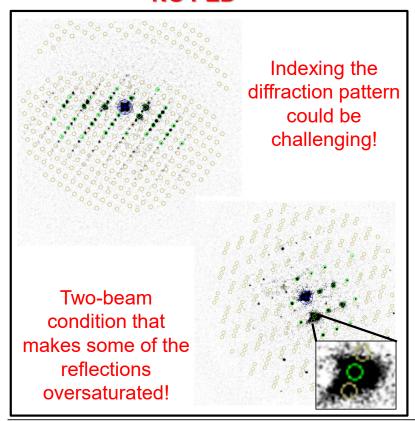


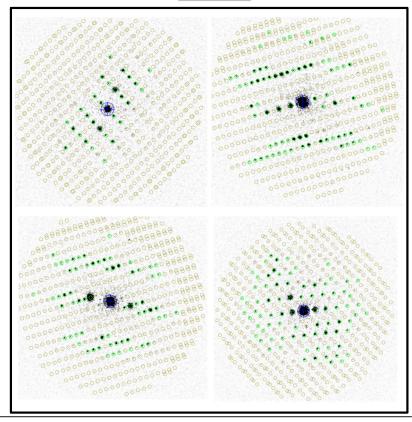
A Case Study – Carbamazepine – Precession Assisted Serial ED


Serial ED Carbamazepine

Ongoing Collaboration Work with Enrico Mugnaioli and Iryna Andrusenko - University of Pisa, Italy Serial ED Carbamazepine

NO PED (1011 Patterns – 573 used)

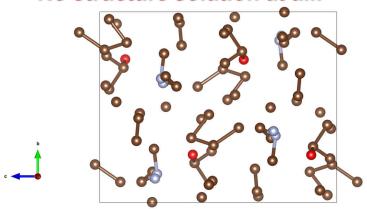

PED 1° (1005 Patterns - 573 used)


A Case Study - Carbamazepine - Precession Assisted Serial ED

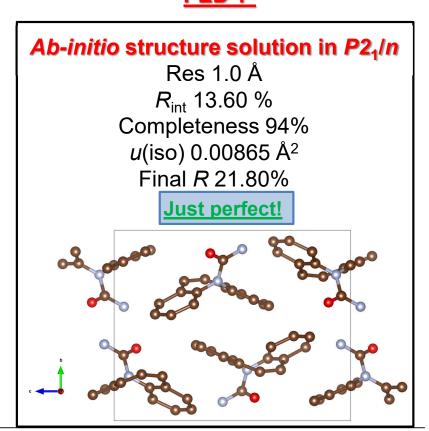
Serial ED Carbamazepine NO PED

Serial ED Carbamazepine

PED 1°

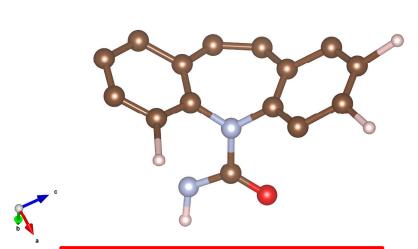

A Case Study - Carbamazepine - Precession Assisted Serial ED

Serial ED Carbamazepine NO PED

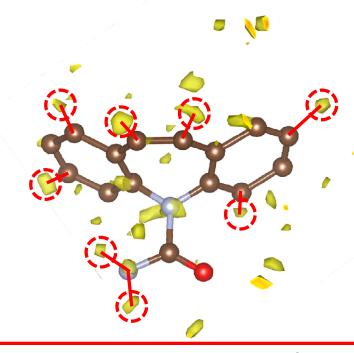

Ab-initio structure solution in P2₁/n

Res 1.0 Å R_{int} 32.89 %

No structure solution at all!



Serial ED Carbamazepine <u>PED 1°</u>


A Case Study - Carbamazepine - Precession Assisted Serial ED

<u>High Quality Structure – Precession Assisted Serial ED</u>

4 hydrogen atoms are spotted in the *ab-initio* solution

Ongoing Collaboration Work with Enrico Mugnaioli and Iryna Andrusenko - University of Pisa, Italy

8 hydrogen atoms are determined from the first difference Fourier map, without performing any refinement

Conclusions:

- 1. NanoMEGAS provides a precession system where the precession angle can be varied over a wide range, depending on the application, and operated at high frequencies.
- 2. The precession mode can be used for both stepwise 3DED and continuous 3DED experiments.
- 3. The NanoMEGAS precession and scanning synchronization system, integrated with many popular camera (CCD, CMOS and Direct Electron Detector e.g. QD, ASI, Dectris, Direct Electron etc..) platforms, enables precession assisted 4D-STEM applications.
- 4. We are developing precession assisted Serial Electron Diffraction (Serial ED) for high-quality structure determination of beam-sensitive materials.

Photo from NanoMEGAS annual meeting, Brussels, June 2025

Thanks for your attention !!!

d Contact Information

Email: partha@nanomegas.com/info@nanomegas.com

Dinkedin (Personal): linkedin.com/in/partha-electron

For further inquiries related to sales related for NM Instrumentation in US Jeffrey Streger (jeff@ravescientific.com) and Kyle Crosby (Kyle@ravescientific.com)

Jeff Streger Principal

Lisa Streger Manager of Operations

Rod Heu
EM Sales, Service &
Applications

Dr. Kyle Crosby Sales Engineer

Luljeta Sylaj Accounting Specialist

Jason Josiah Shipping and Logistics

Serial ED Carbamazepine PED 1°

Serial ED Carbamazepine NO PED

Manual data collection in STEM mode CL 250 (resolution in real space up to 0.7Å)
PED 1°

Total **1005** frames
Exposition time 200 ms / frame
Acquisition time – half day
Size 0.99 GB

Used 573 frames

Manual data collection in STEM mode CL 250 (resolution in real space up to 0.7Å)

NO PED

Total **1011** frames
Exposition time 200 ms / frame
Acquisition time – half day
Size 0.99 GB

Used **573** frames

