

https://github.com/carsonpurnell/cryotomosim_CTS

Segmentation

Typical Deep Learning Parameters

All models were trained in Dragonfly as either semantic segmentation or regression U-Nets

Patch Size: 128x128x11

Batch Size: 8

Loss: Categorical Cross Entropy (segmentation)

Mixed Gradient Loss (regression)

Optimization: Adadelta

Patience: 15 epochs

Label: Ticks (2 Axes) ▼ ☐ Lock text

→ Visual effects —

Diversify your crowding agents

Training a generalized segmentation model

7 classes:
Membrane
TriC
Ribosome
Actin
Cofilactin
Microtubules
Background

Concatenation

400 400 504

Slice through an example tomogram of 400x400xZ voxels, where Z=43-59

400x400x531 voxels

First iteration: Neuronal tomograms

7 classes:
Membrane
TriC
Ribosome
Actin
Cofilactin
Microtubules
Background

400x400x19 voxels

Base network: Training data

Synthetic block

Real block

Result from first iteration & Hand-correction

Result from first iteration & Hand-correction

Concatenation to update training data

Synthetic block

Real block

Basic workflow

Second iteration: Non-neuronal tomograms

Eukaryotic multi-layer membrane

Bacterial double membrane

Eukaryotic Cytoplasm

Third iteration: Tomographic artifacts

Final network: Training data

Synthetic data (400x400x531)

Real data (400x400x395)

NeuralSeg can segment most cellular tomograms that meet its criteria

Ideal tomograms have 12-14 angstroms/pixel, -4 to -10 µM defocus, and sufficient contrast.

NeuralSeg can differentiate between actin and cofilactin

Bare actin and cofilin-decorated actin are distinguished as individual, bundles, or mixed bundles.

Typical tomographic artifacts are ignored

Denoising

Ground Tomo

New Tomo Denoised Tomo

Membrane

Cytoskeleton

Large Macromolecules >200kDa

Small Macromolecules <200kDa

Ground

SNR

Diversify your inputs

<200 kDa

>200 kDa

Defocus vs. SSIM

Swulius Lab
Carson Purnell
Michael Grillo
Steph Grillo

Linh Nguyen

Ex-Members
Ryan Hylton
Jessica Heebner

Collaborators
Neal Waxham
Sergei Grigoryev
Fred Heberle

Thanks for your attention!

<u>DragonFly</u> Everyone Funding/Support
NINDS, TSF, CryoEM
Core