

Segmentation and Subtomogram Averaging Pipelines

April 2nd, 2025 New York Structural Biology Center Columbia University Jake Johnston

Today's goals

 Discuss the several software/pipelines available for cryo-ET processing

 Approaching biological questions using subtomogram averaging or segmentation workflows

Cryo-ET Workflow Summary

Fluorescence Screening Fluorsecence guided data collection/Milling

Cryo-ET Workflow Summary

SC

Koning et al., Annals of Anatomy, 2018

SC

Koning et al., Annals of Anatomy, 2018

Generalized Workflow for Cryo-ET Processing

Adapted from Leigh et al., 2019

Tomography Software Packages

TomoTwin, DeePict, PySeg

https://github.com/phonchi/Computational-CryoET

Tomography Software Packages

Serial EM, Tomo5

Motion Correction/CTF Estimation

CTF Estimation

MotionCorr, UnBlur, MotionCor2, alignparts_lmbfgs, Zorro / Xmipp, CTFplotter

CTFFIND4/5,Gctf, IMOD (CTFPlotter), Warp, emClarity

Tilt-Series Alignment

Imod, Raptor, EMAN2, Dynamo, UCSF tomo, Protomo, TomoAlign, AreTomo, Xmip

Tomogram Reconstruction

Imod, Raptor, AuTom, EMAN2, Dynamo, UCSF tomo, Protomo, TomoAlign, AreTomo, TOMO3D

Denoising

Warp-denoise, Topaz Denoise, CryoCare

Missing Wedge Correction

IsoNet, REST

Software containing full/almost full sub-tomogram averaging workflows

> Warp/Relion/M, Relion4/5 Tomography, TomoBear, NextPYP, EMAN2

A localized list of most of the software packages available for each step https://github.com/phonchi/Computational-CryoET

TomomemSegTV, MemBrain, Tardis, Amira, OrsDragonfly, EMAN2

Motion Correction

All:

- Global and local
- Near real-time with collection
- Dose weighting
- Motioncor & Warp:
- GPU
- CTF estimation
- Warp:
- 3D modeling

CTF Estimation for Tilt-Series

 Ideally, Accurate high-resolution estimation (3-4 angstroms) should be seen

Warp

- Local CTF estimation
- Estimates tilt axis angle per image
- Determines handedness
- Refines based on whole tiltseries
- Corrects for CTF
- Local CTF refinement

- Local CTF estimation
- Estimates tilt axis angle per image
- Estimates local ice thickness
- Corrects for CTF

SC

Tegunov et al., 2019, 2021

Elferich et al., 2023

Tilt-Series Alignments

Fiducial Alignments

IMOD (and other gold bead tracking software)

David Mastronarde

- Requires a sufficient number of well-behaved gold beads
 - Sample prep optimization
- Semi-automated in IMOD
- Automated in other workflows

Fiducial-less

Zheng et al., 2022

- No gold beads
- AreTomo utilizes projection method for alignment
- Local alignment

٠

- Aretomo3 includes CTF estimation, and frame alignment
- Fast a couple minutes, does not require powerful Gpus
- Critical Parameters to tune– AlignZ, increase or decrease based on sample thickness
- Some software, such as imod, utilize patch tracking for tiltseries alignment

Tomography Particle Picking/Segmentation Several different approaches can be taken depending on the target.....

- Geometry-based approaches
- Template Matching
- Machine Learning
- Iterative Approaches
- Manual
- Denoise before picking or segmenting, it helps!

Tomogram Denoising Approaches

Deconvolution

Deconvolution Missing Wedge-correction

- Warp-Denoise
- Purified hemoglobin

- Makes annotating tomograms much easier!
- IsoNet Missing Wedge Correction
- Purified Virus-like particles
- https://github.com/IsoNet-cryoET/IsoNet

Tomogram Denoising Approaches

Deconvolution

- Warp-Denoise
 - Noise2Noise
 - Purified hemoglobin

Makes annotating tomograms much easier!

- IsoNet Missing Wedge Correction
- Empiar-10499
- https://github.com/IsoNet-cryoET/IsoNet

- Machine learning
- Train with positives and negatives
- Softwares such as **Tardis** and **Membrain-seg** provide automatic segmentations but do require manual clean and potentially labeling
- Github: Tardis: <u>https://github.com/SMLC-NYSBC/TARDIS</u>
- Github: Membrain-seg:
 https://github.com/teamtomo/membrain-seg

Dynamo

- Semi-automated
- Backbone, helical, and circumferential picking
- Helical symmetry determination

Dynamo

• Create meshes to pick on any shape membrane

Dynamo

• Pick vesicles and pick around vesicles

Castaño-Díez et al., 2012, 2017, 1018, 2021

Template matching

• Pick based on size and shape

Template matching with PyTom

CrYOLO

IMOD patch-tracking + IsoNet

Dynamo TM CC map based on a

Dynamo TM annotations on **b**

crYOLO annotations on image after AreTomo-local + IsoNet + band-pass

- Machine learning
 - Requires many positive and negative labels

Wagner et al., 2019 Balyschew et al., 2023

Software for Subtomogram-Averaging

Sub-volume average

Software for Subtomogram-Averaging

- 3D alignment: Can't refine image angles
- 2D alignment: Can refine image angles higher resolution
- Common workflow: Start with 3D alignment and high binning (account for missing wedges properly), then go to 2D refinement

Subtomogram-Classification

 Can the software separate real featurescleaner picks to start with make classification much easier

 Speed is often an issue – 3D data takes long to process, i.e, classify using extracted 3D subtomos

Sub-Tilt Refinement Software

EMAN2

Sub-Tilt Refinement

Total Particles ==23307

M Refinement low-pass filter 15A masked refinement

10 angstrom map 256 box Unbinned (pixel size 1.7005 A/pix)

Mask used

5.1 angstrom map 296 box Unbinned (pixel size 1.7005 A/pix) MCore --population m/10499_round1.population -refine_imagewarp 5x5 -refine_particles --ctf_defocus -ctf_defocusexhaustive -perdevice_refine 4

4.0 angstrom map 296 box Unbinned (pixel size 1.7005 A/pix)

MCore \

- --population m/10499 round1.population \
- --refine_imagewarp 5x5 \
- --refine_particles \
- --ctf_defocus

Unbinned (pixel size 1.7005 A/pix)

MCore \

3rd round

--population m/10499_round1.population \ --refine_imagewarp 5x5 \ --refine_particles \ --refine_stageangles

M sub-tilt refinement EMPIAR-10499

Processed with WarpTools, Relion4, to M in linux©

Sub-Tilt Refinement

Total Particles ==23307

^{4th/5th}round

M Refinement low-pass filter 15A masked refinement

10 angstrom map 256 box Unbinned (pixel size 1.7005 A/pix)

Mask used

3.69 angstrom map

296 box

Unbinned (pixel size 1.7005 A/pix)

MCore \

--population m/10499_round1.population \

--refine_imagewarp 5x5 \

--refine_particles \

--refine_mag \

--ctf_cs \

--ctf_defocus \

--ctf_zernike3

Alister will talk more about WarpTools, Relion, and M right after this!

M sub-tilt refinement EMPIAR-10499

Processed with WarpTools, Relion4, to M in linux©

Mapping Averages back for Cellular Context

- Takes alignment/ segmentation files from various software, imports the averages in a point cloud in ChimeraX
- Only viewable in ChimeraX
- Can overlay with the tomogram
- Can manipulate objects in real-time and in VR
- Scriptable in ChimeraX

ArtiaX

Test Cases

• Too many Software, and how do we apply these different software to our datasets?

• It depends on the biological question you are answering and the sample type

• What you need can dictate how the data collection is done...

• Test Case, looking at ER ultrastructure in migrating cells, Segmentation pipeline

Directed Cell Migration is Critical for Several Physiological and Pathological Processes

Cell Polarity is present in all Migrating Cells

Certain Structures always form at the front of the cell, and others in the back!

Membrane Contact Sites

Nuclear envelope

Phillips et al, Nat Rev Mol Cell Biol 2015

The Functional Diversity of Membrane Contact Sites

Prinz et al, Nat Rev Mol Cell Biol 2020

Endoplasmic Reticulum Contact Sites are Polarized in Migrating Cells

ER-PM contact reporter: **MAPPER**

Chang et al, Cell Reports, 2013

Data from Bo Gong, Weill Cornell Medicine

Gong, B., Johnston, J.D., Thernicke, A., DeMarco, A. & Meyer, T. (2024) Endoplasmic Reticulum-Plasma Membrane contact gradients direct cell migration. Just accepted to Nature!

Polarized Cells Exhibit Endoplasmic Curvature Gradients

Data from Bo Gong, Weill Cornell Medicine

Gong, B., Johnston, J.D., Thernicke, A., DeMarco, A. & Meyer, T. (2024) Endoplasmic Reticulum-Plasma Membrane contact gradients direct cell migration. Just accepted to Nature!

• Determine the high-resolution endoplasmic reticulum architecture in polarized cells using cryo-electron tomography

 Comparative analysis of endoplasmic reticulum to plasma membrane contact sites at the front and back of polarized cells at high-resolution using cryo-electron tomography

Forced cell polarization using Micropatterning Approach

Data from Bo Gong, Weill Cornell Medicine

Photo-Micropatterning to Induce Cell-Polarization on Electron Microscopy Grids

5X Grid Overview RPE1 cells Venus-Mapper Photo-Micropatterning to Induce Cell-Polarization on Electron Microscopy Grids

5X Grid Overview RPE1 cells Venus-Mapper

100X Grid Overview Z-stack RPE1 cells Venus-Mapper

Low magnification Overview of Micro-Patterned Grid

Front of the Polarized Cell Exhibits Tubular or Smooth Endoplasmic Reticulum

Membrane-Segmentation Workflow

Import into DragonFly Initial Segmentation with Manually Clean up ~ 5 Train Network Tardis/ and or 2-D Tomographic slices TomomemsegTV Train 5 Layer UNet Train Tardis with IsoNet-Corrected Tomogram **Binary Mask segmentation** Clean Segmentations Iterate Final clean segmentation

ORSDragonFly Training

3d surface rendering

Front of the Polarized Cell Exhibits Tubular or Smooth Endoplasmic Reticulum

Front of the Polarized Cell Exhibits Tubular or Smooth Endoplasmic Reticulum

Gong, B., Johnston, J.D., Thernicke, A., DeMarco, A. & Meyer, T. (2024) Endoplasmic Reticulum-Plasma Membrane contact gradients direct cell migration. Just accepted to Nature!

Back of the Polarized Cell Exhibits Rough or Sheet-Like Endoplasmic Reticulum

Back of the Polarized Cell Exhibits Rough or Sheet-Like Endoplasmic Reticulum

Gong, B., Johnston, J.D., Thernicke, A., DeMarco, A. & Meyer, T. (2024) Endoplasmic Reticulum-Plasma Membrane contact gradients direct cell migration. Just accepted to Nature!

Back of the Polarized Cell Exhibits Rough or Sheet-Like Endoplasmic Reticulum

Gong, B., Johnston, J.D., Thernicke, A., DeMarco, A. & Meyer, T. (2024) Endoplasmic Reticulum-Plasma Membrane contact gradients direct cell migration. Just accepted to Nature!

Surface Morphometrics Analysis to Quantify Segmentations

Quantifying organellar ultrastructure in cryo-electron tomography using a surface morphometrics pipeline

Benjamin A. Barad^{1,†}, Michaela Medina^{1,†}, Daniel Fuentes^{1,2}, R. Luke Wiseman², and Danielle A Grotjahn^{1,*}

¹Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 ²Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 [†]These authors contributed equally. ^{*}Corresponding Author

Baraad et al, Journal of cell biology 2023

Tubular ER in the Front of Migrating Cells Exhibits Higher Curvature then the Sheet-like ER in the Back

Gong, B., Johnston, J.D., Thiemicke, A. *et al.* Endoplasmic reticulum–plasma membrane contact gradients direct cell migration. *Nature* 631, 415–423 (2024). https://doi.org/10.1038/s41586-024-07527-5

Area-Weighted Histograms (smoothed for visuals) Unpaired student t-tails test (P***<0.006) N = 7 tomograms

Tubular ER in the Front of Polarized Cells Exhibit Smaller ER-Luminal Widths then the Sheet-like ER in the Back

Gong, B., Johnston, J.D., Thernicke, A., DeMarco, A. & Meyer, T. (2024) Endoplasmic Reticulum-Plasma Membrane contact gradients direct cell migration. Just accepted to Nature!

Contact-site Arrangement in the Front and the Back of Polarized Cells

Gong, B., Johnston, J.D., Thernicke, A., DeMarco, A. & Meyer, T. (2024) Endoplasmic Reticulum-Plasma Membrane contact gradients direct cell migration. Just accepted to Nature!

Conclusions from this Work

• Polarization of ER in migrating cells is comprised of tubular ER in the Front and rough-ER or sheet-like ER in the back

• ER and plasma membrane contact site gradients are driven by this to form larger more stable contacts in the back and weaker contact sites in the front of the cell

Thank you!

Questions/ Discussion?

