

2025 Tomo Short Course

Introduction to Cryo-electron Tomography

Wei Dai

Department of Cell Biology and Neuroscience
Institute for Quantitative Biomedicine
Rutgers University
March 31, 2025

Learning Goals

- Understand the history and applications of cryoET in structural biology.
- Understand how technological and computational advances expand cryoET applications in Cell Biology.
- Examine how cryoET reveals the molecular landscape of fungal plasma membrane proteins.

Multi-scale Bioimaging to Address Dynamics in Cell Biology

Tilt series acquisition and tomogram reconstruction

Diamond Light Source

EMDB: Entry Modality Distribution

Electron Tomography: Early Days

Tomogram of thin-sectioned, plasticembedded insect flight muscle

EMD-1001

Chen et al. JSB 2001 https://doi.org/10.1006/jsbi.2000.4321

Fitting of atomic models to the 3D average of rigor insect muscle cross-bridges

PDB 1M8Q: atomic model of rigor crossbridges

Electron Tomography: The Ice-Age

The periphery region of *Dictyostelium discoideum* cells

Medalia et al. Science 298, 2002

Electron Tomography: To Study the Polymorphic Elements

Tegument layers and asymmetric elements in HSV virions

Cellular CryoET to Directly Visualize Biological Processes

Visualizing the phage maturation process by cellular phase contrast cryoET

CryoET to Visualize Subcellular Structures and Organelles

ATP synthase dimer on mitochondria cristae

Cryo-focused Ion Beam: The Beginning of In Situ Structural Biology

The Nuclear periphery by cryoET of FIB-milled of a Hela cell

Subtomogram Averaging – Computationally Isolate Particles for High(er) Resolution Structure Determination

Subtomogram Averaging vs CryoEM Single Particle Analysis

Subtomogram Averaging vs CryoEM Single Particle Analysis

Apoferritin at 1.6Å by subtomogram averaging **EMD-16032** Obr M. et al., (2023)

Human apoferritin at 1.15Å by cryoEM single particle analysis Yip K. et al., Nature (2020)

In situ Structural Biology at High Resolution

O'Reilly, F. J. et al., Science 2020

2.9Å resolution structure of ribosomes in chloramphenicol-treated *Mycoplasma pneumoniae* cells

L. Xue et al. Nat Struct Mol Biol (2024)

Al-based Structure Prediction Empowers Integrative Structural Analysis of Human Nuclear Pores

Summary - Why CryoET?

- Visualize the unique features of biological samples
- Understand the dynamics and organizations of protein complexes and organelles involved in fundamental biological processes
- Resolve in situ structures under the cellular context

Mapping the Molecular Landscape of the Fungal Plasma Membrane by Integrative Structural Biology

A Silent but Deadly Crisis

- Fungal infections affect more than 1
 billion people each year and kill >1.5
 million globally.
- In the US, direct medical costs are estimated at \$6.7 \$7.5 billion annually.
- The number of deaths from fungal infections has increased during the COVID-19 pandemic.

https://www.nytimes.com/2023/03/20/health/candida-auris-us-fungus.html

Deadly Fungus Spread Rapidly During the Pandemic, C.D.C. Says

Candida auris, a drug-resistant fungus that health officials hoped to contain is now in more than half the 50 states, according to a new research paper.

The Fight Against Fungi

• Fungal cells:

- Eukaryotic
- Unique membrane lipid compositions
- Have a cell wall that is critical for fungal growth, survival, and pathogenesis

Antifungal drugs

- Polyenes (Amphotericin B): bind to ergosterol in the plasma membrane
- Azoles: inhibit ergosterol biosynthesis
- Echinocandins: inhibit beta glucan synthase activities

Fungal Glucan Synthase

- Multi-subunit complex with two main subunits: <u>a large</u>, membrane embedded catalytic subunit encoded by *FKS* genes, and a regulatory subunit Rho1
- The membrane embedded catalytic subunit is the target for the echinocandin drugs
- First 3D structure resolved by cryoEM in 2023

Fungal Glucan Synthase – CryoEM Structure

- Has a conserved cellulosesynthase-like fold
- Has FKS1-specific features, notably at the membranecytosolic interface
- A solvent-exposed chamber as the active site, and conserved residues for substrate binding and catalysis

Lipids May be Involved in GS Catalytic Activities & Drug Interactions

- GS purified by different detergents
 - Displayed conformational differences at the active site
 - Showed varied susceptibilities to CSF exposure.
 - CSF treatment increases the activities of GDN-purified GS in vitro

Tomograms of *C.* glabrate Plasma Membranes

Proteomics Profiled the Abundance of Fungal Membrane Proteins

- Mass spectrometry identified 3,905 proteins.
- Fks1 (GS) and Pma1 (proton pump) are among the most abundant <u>and</u> detectable membrane proteins.

Annotation of the Fungal Plasma Membrane

Fungal Plasma Membrane Proteins Segregate into Microdomains

Annotation of an Echinocandin-treated Plasma Membrane

Echinocandin Treatment Disrupts Membrane Protein Microdomain Organization

Model: Echinocandin Inhibition Mediated by the Integral Lipids

Will Changes to Lipid Compositions Affect Echinocandin Inhibition?

FEN1 encodes a fatty acid elongase involved in early steps in sphingolipid biosynthesis

Δfen1 Exhibit Altered Biophysical Properties of the Membrane

Δfen1 Exhibit Altered Echinocandin Susceptibility

Summary

- Integrative cell biology, combining mass spectrometry, biophysical analyses, and structural studies supported by cryo-ET, provides a comprehensive understanding of membrane protein structure and dynamics within the cellular context.
- The membrane environment plays a pivotal role in GS function and drug responses and presents a promising avenue for drug development.

Acknowledgments

Jennifer Jiang

Cris Jimenez-Ortigosa

Jeff Cheng

Anusha Puri

Mikhail Keniya

Cynthia Pang

Yunkyung Lee

Sanghyuk Lee Group

Zhen Shi Group **Huan Wang** Rutgers CryoEM & Nanoimaging Facility

Jason Kaelber, Ph.D.

Rutgers Mass Spectrometry Core Facility

Haiyan Zheng, Ph.D.

Rutgers Busch Biomedical Research Grant

Perlin Group

Cristina Jimenez-Ortigosa Ph.D. Mikhail Keniya

Stanford University

Muyuan Chen, Ph.D,

Carnegie Mellon University Min Xu Group Xueying Zhan, Ph.D.

The National Network for CryoET

