Thermo Fisher s c | e N T | F | C

Cryo-ET Sample Prep: Defining, optimizing, and creating ideal lamellae

Geoff Perumal Sr. Sales Development Rep., Electron Microscopy

The world leader in serving science

From cell culture to subcellular 3D data

Range of samples accessible with tomography

Sample vitrification methods

Thin-film vitrification (< 5 μm) High-pressure freezing (< 200 μm)

Cell preparation

Rationale for cryo-FIB thinning

Cryo-FIB-SEM Systems for Life Sciences

Cryo-EM and Volume-EM applications

Thermo Fisher

AQUILOS 2 Cryo-FIB

HYDRA Bio Cryo-PFIB

Pioneering Cryo-Lamella Prep

Multi-application Versatility

ARCTIS Cryo-PFIB

Automation & Connectivity

FIB-SEM Principle

FIB-SEM Principle

'On-the-grid' *in situ* lamella preparation by Cryo-FIB

FIB-SEM Microscope

Data Courtesy Max Planck Institute of Biochemistry (*Miroslava Schaffer and Ben Engel*)

Producing thin cryo-lamellae from whole cells

Data Courtesy

Biochemistry (M.Schaffer)

Max Planck Institute of

'On-the-grid' in situ lamella preparation by Cryo-FIB

TEM

Thermo Fisher S C I E N T I F I C

Thermo Fisher

What image data does tomography provide?

TOMOGRAM

VISUALIZATION

Aquilos 2 Cryo-FIB | Automation capabilities

LAMELLA MILLING AUTOMATION

- Proven AutoTEM Cryo software for automated milling of cryo-lamellae
- Targeting in combination with Maps software
- Increasing milling throughput and efficiency

ThermoFisher SCIENTIFIC

Targeting Example – Using Maps and xT

Triple Stained Chinese Hamster Ovary (CHO) Cell – Actin Red, Mitochondria (Green dots – Target Yellow Circle), Nucleus Blue

Thermo Fisher

SCIEN

The Evolution of Integrated Fluorescence

From a novel concept, to a publication, to an integral part of cryo tomography

Manual Targeting

CHO with Mitotracker and Hoechst – Aim for Mitochondrial Cluster

xT UI – ion view

Target in Slice 44, Measure X_{CLEM} 72.82um, Measure Y_{CLEM} 36.2um, Target in Slice in 39, Difference in z is 5 slices (400nm slice = 2um), red channel was used to identify the fiducial, its not needed for the cell.

Check

Cell LM

Is the target in the lamella?

5um Chunk - LM

Thermo Fisher

Target on Track Throughout the Lamella Thinning Process

> SEM Contrast Correlates to the Mitochondria in the LM

Statut

240nm Lamella – Combined SEM/LM

240nm Lamella – SEM

Go to TEM

Take your project and information for down stream TEM/Processing

TEM

Overlay to TEM

TEM Tomo

ThermoFisher SCIENTIFIC

Insulinoma Cells with FITC labelled insulin

iFLM guided lamella milling

ION (Tilted view)

iFLM | Guided lamella milling | 3D Transformation

Precise 3D Localization by Integrated Fluorescence Microscopy (iFLM) for Cryo-FIB-milling and In-situ Cryo-ET

Jae Yang, Veronika Vrbovská, Tilman Franke, Bryan Sibert, Matt Larson, Tom Coomes, Alexander Rigort, John Mitchels, Elizabeth R Wright ⊠

Microscopy and Microanalysis, Volume 29, Issue Supplement_1, 1 August 2023, Pages 1055–1057, https://doi.org/10.1093/micmic/ozad067.541

Published: 22 July 2023

Range of samples accessible with tomography

Aquilos 2 Cryo-FIB | Cryo-Lift-Out

CRYO LIFT-OUT

- Proven EasyLift Cryo lift-out system
- Supports lift-out from onthe-grid and HPF samples
- Full integration in cryo-FIB control software
- Proven best-practice procedure(s)

Cryo-lift-out

Cryo lift out - recent pre-print - serial lift out

Thermo Fisher S C I E N T I F I C

Serial Lift-Out – Sampling the Molecular Anatomy of Whole Organisms - Max Planck Institute - from Oda Helene Schiøtz *et al.* bioRxiv 2023

Arctis | Automated lamella prep

Fully automated cryo-lamellae production | SEM overviews (including final polishing steps; Lamellae prepared with AutoTEM Cryo on Arctis; Sample: Chlamydomonas)

Arctis | Automated lamella prep

Fully automated cryo-lamellae production | TEM overviews (including final polishing steps; Lamellae prepared with AutoTEM Cryo on Arctis; Sample: Chlamydomonas)

Arctis | Automated lamella prep 47 lamella in ~48hrs

Arctis | New TomoGrid Concept

Capturing multiple Tomography areas per lamella

Thermo Fisher

SCIENTIFLO

Arctis | ... in the EM-facility

ThermoFisher SCIENTIFIC

Thank you

Proprietary & Confidential | xiangli.wang@thermofisher.com