Algorithms and Foundational Math

Part II



Theoretical basis of single-particle reconstruction

Correlation and particle picking
Single-particle reconstruction

Maximum-likelihood methods



gx,y) = Gu,v)

Fourier Transform

gxh—> GH Convolution
g® h —> GH* Correlation
g(x,y) = Gu',v) Rotation
P y g(x,y) = G(u,0) Projection



Convolution and correlation

Convolution

Jx,y)=g%h

flx,y) = Jjg(x — s,y — 1) h(s,1)ds dt

— F(u,v) = G(u,v)H(u, v)

Correlation

c(x,y)=gQ®h
c(x,y) = [Jg(x + s, y+ 1) h(s, 1) ds dt
— C(u,v) = G(u,v)H*(u, v)




Correlation locates motifs in images

Translational cross-correlation function

— XQ®R
Cor(x, y) ® Correlation is like convolution.

— Zh(S, ) g(x+ s,y +1) The FT pairis: g @ h - GH™
A\ A
Reference h(s, t) Signal g(x,y) Cross-correlation  Cor(x, y)
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Correlation locates motifs in images

Translational cross-correlation function

Cor(x,y) =XQ®R
= Zh(s,t)g(x+s,y+ f)

S,t

Reference h(s, f)




A correlation-based particle picker

CTF-filtered projections and decoys
3D Reference
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A correlation-based particle picker
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Max of correlations
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A correlation-based particle picker

Max of correlations
with particle references
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A correlation-based particle picker

TemplatePicker5/slotll 1000 0001.mat
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Green: found particles
Red dots: decoys
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A correlation-based particle picker

TemplatePicker5/slotll 1000 0001.mat
] | | I I |

Best-matching
references




Correlation and particle picking
Single-particle reconstruction

Maximum-likelihood methods



How to get 3D structures from 2D images? The Fourier slice theorem

Fourier

Worm



Tomographic reconstruction: 2D image from 1D projections
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Tomographic reconstruction: 2D image from 1D projections

W Rl P ETTET T




Tomographic reconstruction: 2D image from 1D projections
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Determining the orientation angles: example from the TRPV1 dataset

Structure of the TRPV1 ion channel
determined by electron cryo-microscopy
Maofu Liao'*, Erhu Cao™, David Julius® & Yifan Cheng'

1/4 of a micrograph - empiar.orqg/10005 One particle image

QQNR



http://empiar.org/10005

The probability of orientations P(¢ | X, V) is remarkably sharp
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Single-particle reconstruction

We assume that image X: comes from a projection
in direction ¢ of volume V according to

The goal is to discover the volume V

T,

Project along ¢,

The first step is to compare images to
determine orientations...




Define the “reference”
as the true image A

modified by the CTF C:

R=CA

We wish to compare a
data image X with it.

There are various ways to compare images

Squared difference

IX—RI?= ) (X;—R)

J
= [IX]I* = 2X - R+ [IR||*

Correlation

Correlation coefficient

~ X-R
| XTIR

Notation used here:

A single pixel in the image X:

Xj —the jth pixel (out of J pixels total)

The i™ image in the dataset X:
Y.

l



First the 2D problem: reconstruct an image

Model of an image

X=CA+N

A “true” image

C contrast-transfer function

N noise image

We can interpret C as either the CTF
operator (x,y space), or just the
multiplicative CTF factor (u,v space)




Modeling the CTF effect on an image
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. Phase flipping

= sgn(C)X
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1.

A = sgn(0)X

2. Wiener filter

~/

Phase flipping

CX
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How to undo the CTF effects?

Projection A

FT of Projection

PSF

-
-

o
-

-

CTE FT of image, k = 0.1



How to undo the CTF effects in noisy images?

. Phase flipping

= sgn(C)X

-100 0 100

2. Wiener filter
angstroms

A —
C?+k




How to undo the CTF effects in noisy images?
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How to undo the CTF effects in noisy images?

N= 1 images
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3. Wiener from multiple images
 Yex, k(s) = 1/SNR
A= i I

k(s)+ Y. C?




Image restoration when spectral SNR is known

N= 1 images
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Image restoration when spectral SNR is known

N= 6 images
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Image restoration when spectral SNR is known

N= 6 images
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3D reconstruction in FREALIGN: correlation and Wiener filtering

A Frealign iteration, refining V' to V"D, consists of Notes
two steps:
1. C,; is the CTF corresponding to the

1. Vary the projection direction ¢; to find the projection image X..

image R; = Cinb,V(”) that maximizes the correlation
’ 2. The projection operator P¢ also

coefficient for each image X,
9¢ 4 includes translations. So ¢ consists of

X - R, five variables: ¢ = {a, J,7,1,,1,}.
| X || R; | 3. P; is the corresponding back
projection operator. In Fourier space it
2. Knowing the best projection direction ¢; for each yields a volume that is all zeros except

image X, update the volume according to for values along a slice.

N o 4. The sumN

4 N
k+ 2 Pl C?

IS therefore the insertion of N slices.



3D reconstruction in FREALIGN—iIterations

1.Start with a preliminary structure V%, n = 1

2.For each particle image Xl- find the projection angles
¢, that gives the best match, so X; ~ C,P (in(”)

lterate

3.Use the Frealign iteration to produce a new 3D
volume VD



3D Classification in FREALIGN

Suppose our model is that an image X can come
from any of K different particle types

V., V,,..Vrand our images are selected

randomly from these volumes, projected with
noise added.

1. The references are

2. Update the volume according to
Rik — CiP¢in :

We assign k; such that V) yields the k k,+ Y  PTC?
l 1%Y% . k

projection (with direction ¢) that gives the |

highest correlation coefficient with X..



Correlation and particle picking
Single-particle reconstruction

Maximum-likelihood methods



Probabilities, another way to compare images

lmage model: X = R+ N

0.016 - P(}(] ‘ R])

Probability of the jth pixel value: S|
0.012 -
X 0.01 -
POXIR) = — 281 = x-RP20* o)
o \/ 271'62 0.006 |-
0.004 - W —p  €—
0.002 |- |
1 ._.;—ﬂ'ﬂ_\ﬂli | | 1 | Tlf_lr—l.—
Probability of observing an entire image A = p o : =
R. :
that comes from I: w is the finesse of the pixel J J

intensity measurements. We’'ll
ignore it (set it to 1).

‘>< 1 o—|IX=R| /262
(2762)/12

P(X|R) =



Simplified image probability

X=R+N

0.016 - P(}(] ‘ R])

0.014 -

0.012 -

0.01

0.008 -

0.006 -

Probability of observing an image that |
comes from R: 0.002 |-

P(X|R) = ¢ e~ IX-RIF20 A—sy AL AR RE AR RRARARR} .

(The normalization factor ¢ we’ll treat as a constant
and ignore it.)



The Likelihood
Let X = {X|..Xy]} be our “stack” of particle images. We’d like to find

the best 3D volume V consistent with these data, say maximizing the
posterior probability

P(V| X).
According to Bayes’ theorem,
P(V) . . .
P(V|X)=PX|V) PX)’ prior —> = Experiment — posterior

likelihood
- P(X) doesn’t depend on V' so we can ignore it.

- P(V) is called the prior probability. It reflects any knowledge about V
that we have before considering the data set.

- P(X | V) is something we can calculate. It’s called the likelihood of V.

Lik(V) = P(X| V)



We know how to compute the likelihood
We know that

PX|V,}) = c o~ IX=CP,VI||*/20°
To get the likelihood for one image we just integrate over all the ¢’s:

PX| V) = JP(X\ V. ) P() dip

assuming P(¢) is uniform.

To get the likelihood for the whole dataset we compute the product over all the images,
N

Pex|v) =] [Peci V. ds,

For numerical sanity, we compute the log likelihood,

N
L= Zln (JP(Xi\V,gb)dgb).

Maximum-likelihood reconstruction is finding V that maximizes L.



Maximume-likelihood estimation is asymptotically unbiased

If the size of the dataset grows without bounds
(and the number of parameters to be estimated does not)
Maximum Likelihood converges to the right answer.



To maximize the likelihood, we’ll need a probability function I'(¢)

A projection

Probability of observing an image X if we know ¢:

P(Xl ‘ Va ¢) = C €_||Xi_CP¢V||2/2(;2

Probability of a projection direction for X::

Fi(¢) — P(¢‘Xiv V) =



The E-M algorithm finds a local maximum of the likelihood

The Expectation-Maximization (E-M) algorithm has this iteration,
guaranteed to increase the likelihood:

Y. [TVAPPLCX; di
=+ X, [TO@PIC? di

V(n+1) —

...Relion’s compute-intensive “Expectation” step is basically the

evaluation of I (¢) for each image X.

For comparison, here is Frealign’s
iteration:

1. Find the best orientation ¢,
for each particle image X,

2. Update the volume according
to

2., Py CX;

V(n+1) _
T2
k+ Y. PTC




3D Classification

We can use Expectation-Maximization to optimize K different

volumes V, V,, .. Vi simultaneously. The formula is essential the For comparison, here is Frealign’s

. iteration:
same except that the function I depends also on &:

™ 1.  Find the best orientation ¢, for
¢k each particle image X,

The iteration, guaranteed to increase the likelihood:
2. Update the volume according to

Zi Jrg,nk)(qb)chle d¢ pn+l) — ziniCiXi

(n+1) __
Vk =

0> 7 k+ 2. PLC?
=+, [TAP)PYC? dop

...Relion’s compute-intensive “Expectation” step is basically the

evaluation of I'; ;(¢) for each image X; and volume V;



The orientation determination is the most expensive step

3
No. operations = T 2PN + n’ + Nn?

& —_—
- d". 3D recon-
mnding struction

orientations



The orientation determination is the most expensive step

3
No. operations = T~ 2w N + tn’ + Nn?

8 —
- d". 3D recon-
qnams struction
orientations

e.g. N=10°, n=128, t=7
No. operations = 6 x 1017 = 19 CPU-years

With efficient programs, ~ 1 CPU-day



Evaluating Fw IS expensive: one of 5 parameters
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Evaluating F¢ IS expensive: one of 5 parameters
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Evaluating F¢ IS expensive: one of 5 parameters
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Evaluating F¢ IS expensive: one of 5 parameters
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Evaluating F¢ IS expensive: one of 5 parameters
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1. To save time, we
compute probabillities
of orientations at low

resolution.

Domain reduction: branch and bound, illustrated for 1D

e
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2. We place bounds on
how much higher the
probabilities could be at
full resolution.

Given a cutoff value, we
evaluate over a fraction of
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Branch-and-bound in cryoSPARC for integrating over orientations

True error over all poses
(expensive, not computed)
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Branch-and-bound in cryoSPARC for integrating over orientations
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Branch-and-bound in cryoSPARC for integrating over orientations

True error over all poses \ (R ol e
S (expensive, not computed) _ S ;
N ye o Hene . 3
o : RO, |
2 Particle image Filtered
Azimuth

Optimal pose
&

«

Lower bound iteration 1

% Minimum I&wer bound

7using true error
computed at %

~ Optimal pose located without
exhaustively computing true
error over all poses

Prune
using true error
computed at v




Stochastic gradient descent to avoid model bias

a . : Precise, expensive steps computed b
lterative refinement : ) L
using all single-particle images o o _ o . _
A Arbitrary Optimization objective function: full likelihood using all images
Accurate e . Ht S i e
randorm initializatio T e O WBF TR IR S
initialization N ‘

Optimization p(V|
objective
function

Probability of 3D map given images

Correct

Incorrect refined

structure structure

S )
Space of all 3D structures
C Stochastic gradient descent (SGD) enables ab initio cryo-EM structure determination
2\ Arbitrary |
random Intermediate Correct ‘ \
initialization structure structurp\ Approximate

Ve a - gradients computed

at each iteration

\ Optimization

v objective
I

Probability of 3D map given images

Noisy, inexpensive steps computed
using randomly selected subsets of
single-particle images (b)

Space of all 3D structures



In Relion, 2D and 3D classification and refinement use the same algorithm

Quantity Meaning in 3D classification Meaning in 2D classification
V, Class volume Class average image
b 3 Euler angles of orientation + 2 translations 1 angle of rotation + 2 translations
P¢ Projection operator 3D — 2D Image rotation and shift
pT Back-projection operator 2D— 3D Reverse shift and rotation
¢




