# Algorithms and Foundational Math 

## Part II

# Theoretical basis of single-particle reconstruction 

Correlation and particle picking
Single-particle reconstruction
Maximum-likelihood methods

## Image processing with Fourier transforms

$$
\begin{array}{cl}
g(x, y) \rightarrow G(u, v) & \text { Fourier Transform } \\
g \star h \rightarrow G H & \text { Convolution } \\
g \otimes h \rightarrow G H^{*} & \text { Correlation } \\
\hline g\left(x^{\prime}, y^{\prime}\right) \rightarrow G\left(u^{\prime}, v^{\prime}\right) & \text { Rotation } \\
P_{y} g(x, y) \rightarrow G(u, 0) & \text { Projection }
\end{array}
$$

## Convolution and correlation

$$
\begin{gathered}
\text { Convolution } \\
f(x, y)=g \star h \\
f(x, y)=\iint g(x-s, y-t) h(s, t) d s d t \\
\rightarrow F(u, v)=G(u, v) H(u, v)
\end{gathered}
$$

## Correlation

$$
\begin{gathered}
c(x, y)=\iint_{C}^{c(x, y)=g \otimes h} g(x+s, y+t) h(s, t) d s d t \\
\rightarrow C(u, v)=G(u, v) H^{*}(u, v)
\end{gathered}
$$

## Correlation locates motifs in images

Translational cross-correlation function

$$
\begin{aligned}
& \operatorname{Cor}(x, y)=X \otimes R \\
& \quad=\sum_{s, t} h(s, t) g(x+s, y+t)
\end{aligned}
$$

Correlation is like convolution. The FT pair is: $g \otimes h \rightarrow G H^{*}$
Reference $h(s, t)$


Translational cross-correlation function

$$
\begin{aligned}
& \operatorname{Cor}(x, y)=X \otimes R \\
& \quad=\sum_{c} h(s, t) g(x+s, y+t)
\end{aligned}
$$

Reference $h(s, t)$
-)


CTF-filtered projections and decoys


| (8) | (8) | (3) | (1) | (1) | P? | (4) | 9 |  | 9 | ึ | (a) | S |  | (8) | क | a) | (3) | (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (3) | (3) | (3) | c | (3) | (5) | (3) | c |  | (8. | © | (8. | (3) |  | \& | (3) | \% | 9 | Q |
| B | (2) | 2 | (2) | (8) | (8) | (4i) | (4) |  | (20) | 20) | $\Rightarrow$ | 8 |  | (16) | 5 | क) | (3) | 8 |
| ¢ 6 | (s) | $\stackrel{3}{8}$ | 8 | ल | ल | (s) | \% |  | \& | (15) | (1) | @ |  | © | (15) | (3) | (3) | G. |
| 2 | Q | § | \% | \$ | \% | \% | \& |  | 8 | Q 8 | 8 | 8 |  | 28 | 68 | 48 | 48 | 23 |
| 88 | 68 | 88 | \$8 | 28 | \% | S | 8 |  | 8 | 8 | \% | ๕ |  | \% | \% | \& | $8^{\circ}$ | 8 |
| क | \% | \& | $\mathrm{g}^{4}$ | 89 | 83 | 83 | 88 |  | B4 | 89 | 83 | 8.5 |  | 8 | \& | Q | \% |  |
| 8 | $\nabla$ | $\theta$ | $\theta$ | Q | Q | 0 | 0 |  | d | d | d | (1) |  | (0) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| Q | - | - | $\bigcirc$ | Q | $\bigcirc$ | $\bigcirc$ | \% |  | $\bigcirc$ | D | D | D |  | D | D | D | 0 | 0 |
| O | \% | $\bigcirc$ | $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A correlation-based particle picker


A correlation-based particle picker

A correlation-based particle picker


Max of correlations
with particle references

A correlation-based particle picker


Green: found particles Red dots: decoys

A correlation-based particle picker


Best-matching references

Correlation and particle picking
Single-particle reconstruction
Maximum-likelihood methods



Tomographic reconstruction: 2D image from 1D projections


Tomographic reconstruction: 2D image from 1D projections


Tomographic reconstruction: 2D image from 1D projections


2D inverse
Fourier transform

Determining the orientation angles: example from the TRPV1 dataset

## Structure of the TRPV1 ion channel determined by electron cryo-microscopy

Maofu Liao ${ }^{1 *}$, Erhu $\mathrm{Cao}^{2 *}$, David Julius ${ }^{2}$ \& Yifan Cheng ${ }^{1}$

1/4 of a micrograph - empiar.org/10005


One particle image

$100 \AA$


The probability of orientations $P(\phi \mid X, V)$ is remarkably sharp

Particle image


Reference: 8989


We assume that image $X_{i}$ comes from a projection in direction $\phi_{i}$ of volume $V$ according to

$$
X_{i}=C_{i} \mathbf{P}_{\phi_{i}} V+N_{i}
$$

The goal is to discover the volume $V$


Project along $\phi_{i}$


V


The first step is to compare images to determine orientations...

There are various ways to compare images

Define the "reference" as the true image $A$ modified by the CTF $C$ :

$$
R=C A
$$

We wish to compare a data image $X$ with it.

## Squared difference

$$
\begin{aligned}
\|X-R\|^{2} & =\sum_{j}\left(X_{j}-\mathrm{R}_{j}\right)^{2} \\
& =\|X\|^{2}-2 X \cdot R+\|R\|^{2}
\end{aligned}
$$

Correlation

$$
\begin{aligned}
\text { Cor } & =X \cdot R \\
& =\sum_{j} X_{j} R_{j}
\end{aligned}
$$

Correlation coefficient

$$
\mathrm{CC}=\frac{X \cdot R}{|X||R|}
$$

Notation used here:

A single pixel in the image $X$ :
$\mathrm{X}_{j}$-the $j^{\text {th }}$ pixel (out of $J$ pixels total)
The $i^{\text {th }}$ image in the dataset $\mathbf{X}$ : $X_{i}$

## First the 2D problem: reconstruct an image

Model of an image

$$
X=C A+N
$$

A "true" image
$C$ contrast-transfer function
$N$ noise image
We can interpret C as either the CTF operator ( $x, y$ space), or just the multiplicative CTF factor ( $u, v$ space)
$X=C A+N$

Can we do the deconvolution: $\tilde{A}=X / C$ ??






1. Phase flipping

$$
\tilde{A}=\operatorname{sgn}(C) X
$$

2. Wiener filter

$$
\tilde{A}=\frac{C X}{C^{2}+k}
$$





CTF


FT of image, $k_{w}=0.1$

1. Phase flipping
$\tilde{A}=\operatorname{sgn}(C) X$
2. Wiener filter

$$
\tilde{A}=\frac{C X}{C^{2}+k}
$$




3. Wiener from multiple images

$$
\tilde{A}=\frac{\sum_{i}^{N} C_{i} X_{i}}{k+\sum_{i}^{N} C_{i}^{2}}
$$


3. Wiener from multiple images

$$
\tilde{A}=\frac{\sum_{i}^{N} C_{i} X_{i}}{k(s)+\sum_{i}^{N} C_{i}^{2}}
$$

$$
\begin{aligned}
k(s) & =1 / \mathrm{SNR} \\
& =\frac{|N|^{2}}{|A|^{2}}
\end{aligned}
$$

## Image restoration when spectral SNR is known

Restoration from multiple images

$$
\tilde{A}=\frac{\sum_{i}^{N} C_{i} X_{i}}{\frac{1}{\operatorname{SSNR}}+\left(\sum_{i}^{N} C_{i}^{2}\right.}
$$

The defocus varies to fill in CTF zeros





## Image restoration when spectral SNR is known

Restoration from multiple images

$$
\tilde{A}=\frac{\sum_{i}^{N} C_{i} X_{i}}{\left(\frac{1}{\operatorname{SSNR}}+\left(\sum_{i}^{N} C_{i}^{2}\right)\right.}
$$

The defocus varies to fill in CTF zeros




## Image restoration when spectral SNR is known

Restoration from multiple images

$$
\tilde{A}=\frac{\sum_{i}^{N} C_{i} X_{i}}{\frac{1}{\operatorname{SSNR}}+\sum_{i}^{N} C_{i}^{2}}
$$

The defocus varies to fill in CTF zeros



## 3D reconstruction in FREALIGN: correlation and Wiener filtering

A Frealign iteration, refining $V^{(n)}$ to $V^{(n+1)}$, consists of two steps:

1. Vary the projection direction $\phi_{i}$ to find the projection image $R_{i}=C_{i} \mathbf{P}_{\phi_{i}} V^{(n)}$ that maximizes the correlation coefficient for each image $X_{i}$,

$$
\mathrm{CC}=\frac{X_{i} \cdot R_{i}}{\left|X_{i}\right|\left|R_{i}\right|} .
$$

2. Knowing the best projection direction $\phi_{i}$ for each image $X_{i}$, update the volume according to

$$
V^{(n+1)}=\frac{\sum_{i}^{N} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i} X_{i}}{k+\sum_{i}^{N} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i}^{2}}
$$

## Notes

1. $C_{i}$ is the CTF corresponding to the image $X_{i}$.
2. The projection operator $\mathbf{P}_{\phi}$ also includes translations. So $\phi$ consists of five variables: $\phi=\left\{\alpha, \beta, \gamma, t_{x}, t_{y}\right\}$.
3. $\mathbf{P}_{\phi_{i}}^{\mathrm{T}}$ is the corresponding back projection operator. In Fourier space it yields a volume that is all zeros except for values along a slice.
4. The sum

$$
\sum_{i}^{N} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i} X_{i}
$$

is therefore the insertion of $N$ slices.

## 3D reconstruction in FREALIGN-iterations

1.Start with a preliminary structure $V^{(n)}, n=1$
2.For each particle image $X_{i}$ find the projection angles
$\phi_{i}$ that gives the best match, so $X_{i} \approx C_{i} \mathbf{P}_{\phi_{i}} V^{(n)}$
3.Use the Frealign iteration to produce a new 3D volume $V^{(n+1)}$

Suppose our model is that an image $X$ can come from any of $K$ different particle types
$V_{1}, V_{2}, \ldots V_{K}$ and our images are selected randomly from these volumes, projected with noise added.

1. The references are

$$
R_{i k}=C_{i} \mathbf{P}_{\phi_{i}} V_{k}
$$

We assign $k_{i}$ such that $V_{k_{i}}$ yields the projection (with direction $\phi_{i}$ ) that gives the highest correlation coefficient with $X_{i}$.
2. Update the volume according to

$$
V_{k}^{(n+1)}=\frac{\sum_{i \in k} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i} X_{i}}{k_{w}+\sum_{i \in k} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i}^{2}}
$$

Correlation and particle picking
Single-particle reconstruction
Maximum-likelihood methods

## Probabilities, another way to compare images

Image model: $X=R+N$

Probability of the $j^{\text {th }}$ pixel value:

$$
P\left(\mathrm{X}_{j} \mid \mathrm{R}_{j}\right)=\frac{\check{ } 1}{\sqrt{2 \pi} \sigma^{2}} e^{-\left(\mathrm{X}_{j}-\mathrm{R}_{j}\right)^{2} / 2 \sigma^{2}}
$$

Probability of observing an entire image that comes from $R$ :

$$
P(X \mid R)=\frac{h^{X} 1}{\left(2 \pi \sigma^{2}\right)^{J / 2}} e^{-\|X-R\| \|^{2} / 2 \sigma^{2}}
$$


$w$ is the finesse of the pixel intensity measurements. We'll ignore it (set it to 1 ).

Simplified image probability

$$
X=R+N
$$

Probability of observing an image that comes from $R$ :

$$
P(X \mid R)=c e^{-\|X-R\| \|^{2} / 2 \sigma^{2}}
$$


(The normalization factor $c$ we'll treat as a constant and ignore it.)

The Likelihood
Let $\mathbf{X}=\left\{X_{1} \ldots X_{N}\right\}$ be our "stack" of particle images. We'd like to find the best 3D volume $V$ consistent with these data, say maximizing the posterior probability

$$
P(V \mid \mathbf{X}) .
$$

According to Bayes' theorem,

$$
P(V \mid \mathbf{X})=P(\mathbf{X} \mid V) \frac{P(V)}{P(\mathbf{X})}
$$



- $P(\mathbf{X})$ doesn't depend on $V$ so we can ignore it.
- $P(V)$ is called the prior probability. It reflects any knowledge about $V$ that we have before considering the data set.
- $P(\mathbf{X} \mid V)$ is something we can calculate. It's called the likelihood of $V$.
$\operatorname{Lik}(V)=P(\mathbf{X} \mid V)$


## We know how to compute the likelihood

We know that

$$
P(X \mid V, \phi)=c e^{-\left\|X-\mathbf{C P}_{\phi} V\right\|^{2} / 2 \sigma^{2}}
$$

To get the likelihood for one image we just integrate over all the $\phi$ 's:

$$
P(X \mid V)=\int P(X \mid V, \phi) P(\phi) d \phi
$$

assuming $P(\phi)$ is uniform.
To get the likelihood for the whole dataset we compute the product over all the images,

$$
P(\mathbf{X} \mid V)=\prod_{i}^{N} \int P\left(X_{i} \mid V, \phi\right) d \phi
$$

For numerical sanity, we compute the log likelihood,

$$
L=\sum_{i}^{N} \ln \left(\int P\left(X_{i} \mid V, \phi\right) d \phi\right) .
$$

Maximum-likelihood reconstruction is finding $V$ that maximizes $L$.

## Maximum-likelihood estimation is asymptotically unbiased

If the size of the dataset grows without bounds
(and the number of parameters to be estimated does not)
Maximum Likelihood converges to the right answer.

To maximize the likelihood, we'll need a probability function $\Gamma(\phi)$

A projection

$$
A=\mathbf{P}_{\phi} V
$$

Probability of observing an image $X_{i}$ if we know $\phi$ :

$$
P\left(X_{i} \mid V, \phi\right)=c e^{-\left\|X_{i}-\mathrm{CP}_{\phi} V\right\|^{2} / 2 \sigma^{2}}
$$

Probability of a projection direction for $X_{i}$ :

$$
\Gamma_{i}(\phi)=P\left(\phi \mid X_{i}, V\right)=\frac{P\left(X_{i} \mid V, \phi\right)}{\int P\left(X_{i} \mid V, \phi\right) d \phi}
$$

The Expectation-Maximization (E-M) algorithm has this iteration, guaranteed to increase the likelihood:

$$
V^{(n+1)}=\frac{\sum_{i} \int \Gamma_{i}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathrm{T}} C_{i} X_{i} d \phi}{\frac{\sigma^{2}}{T \tau^{2}}+\sum_{i} \int \Gamma_{i}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathrm{T}} C_{i}^{2} d \phi}
$$

For comparison, here is Frealign's iteration:

1. Find the best orientation $\phi_{i}$ for each particle image $X_{i}$
2. Update the volume according to

$$
V^{(n+1)}=\frac{\sum_{i} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i} X_{i}}{k+\sum_{i} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i}^{2}}
$$

...Relion's compute-intensive "Expectation" step is basically the evaluation of $\Gamma_{i}(\phi)$ for each image $X_{i}$

We can use Expectation-Maximization to optimize $K$ different volumes $V_{1}, V_{2}, \ldots V_{K}$ simultaneously. The formula is essential the same except that the function $\Gamma$ depends also on $k$ :

$$
\Gamma_{\phi_{i}, k}^{(n)}
$$

The iteration, guaranteed to increase the likelihood:

$$
V_{k}^{(n+1)}=\frac{\sum_{i} \int \Gamma_{i, k}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathrm{T}} C_{i} X_{i} d \phi}{\frac{\sigma^{2}}{T \tau^{2}}+\sum_{i} \int \Gamma_{i, k}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathrm{T}} C_{i}^{2} d \phi}
$$

For comparison, here is Frealign's iteration:

1. Find the best orientation $\phi_{i}$ for each particle image $X_{i}$
2. Update the volume according to

$$
V^{(n+1)}=\frac{\sum_{i} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i} X_{i}}{k+\sum_{i} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i}^{2}}
$$

...Relion's compute-intensive "Expectation" step is basically the evaluation of $\Gamma_{i, k}(\phi)$ for each image $X_{i}$ and volume $V_{k}$

The orientation determination is the most expensive step

No. operations $\approx \underbrace{\frac{\pi^{3} t^{2} n^{5} N}{8}+\underbrace{\pi n^{4}+N n^{2}}_{\begin{array}{c}\text { 3D recon- } \\ \text { struction }\end{array}}}_{\begin{array}{c}\text { finding } \\ \text { orientations }\end{array}}$

The orientation determination is the most expensive step

No. operations $\approx \underbrace{\frac{\pi^{3} t^{2} n^{5} N}{8}+\underbrace{\pi n^{4}+N n^{2}}_{\begin{array}{c}\text { 3D recon- } \\ \text { struction }\end{array}}}_{\begin{array}{c}\text { finding } \\ \text { orientations }\end{array}}$
e.g. $N=10^{5}, n=128, t=7$

No. operations $\approx 6 \times 10^{17} \approx 19$ CPU-years
With efficient programs, ~ 1 CPU-day

Evaluating $\Gamma_{\psi}$ is expensive: one of 5 parameters

| \% | E | \% | c\% | 蕆 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | \% | 4 | (4) | (1) | 4 |
| (4) | 4 | 48 | 38 | (24) | (27) |
| (27) | 87 | 38 | (3) | 3 | 6 |
| 6 | 6 | 6 | \% | ¢ | $\pm$ |
| ๕ | 2 | 8 | (3) | (3) | (8) |
| (8) | (8) | (3) | (\%) | * | (1) |
| 13 | 13 | 13 | (18) | (18) | 根 |
| 43 | (4) | 4 | (4) | (8) | 28 |
| (2) | 48) | \% | 3 | 3 | 5 |
| E |  |  |  |  |  |




Evaluating $\Gamma_{\phi}$ is expensive: one of 5 parameters

| 5 | ¢ | 8 | 8 | C | (2) | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% | * | 全 | 9 |  | 4) | (4) |
| 4 | 4 | 4 | (1) |  | 6 | (6) |
| (2i) | (8) | 38 | 3 |  | 38 | \% |
| * | 6 | 6 | 6 |  | * | $\approx$ |
| $\cong$ | \% | 88 | E |  | 3 | 23 |
| (8) | * | (8) | 6 |  | 3 | 6 |
| 13 | (13) | (1) | 13 |  | 3 |  |
| (4) | 4 | 48 | 4 |  | 4 | 28 |
| 28 | 28 | 2 | 5 |  | 5 | \% |
| 8 |  |  |  |  |  |  |





Evaluating $\Gamma_{\phi}$ is expensive：one of 5 parameters

| 8 | 5 | \％ | 多 | $\&$ |  | ＊ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4） | 食 | 全 | 9 | 2 |  | ， |
| 4 | 4 | 4 | 8 |  |  | （6） |
| 681 | 8i8 | $\sqrt{83}$ | 3 | d |  | （8） |
| ＊ | 6 | C | 6 |  |  | $\cong$ |
| ¢ | ¢ | 8 | 8 |  |  | （3） |
| \＄ | \％ | ＊ | ¢ | 1 |  | （1） |
| （1） | 13 | 13 | 13 |  |  | （8） |
| （2） | 43 | （4） | \％ |  |  | （4） |
| 28 | 2 | （2） | 8 |  |  | 5 |
| E |  |  |  |  |  |  |





Evaluating $\Gamma_{\phi}$ is expensive：one of 5 parameters

| \％ | （5） | c\％ | \％ | 令 | \＆ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 全 | 4 | 9 | 9 | 4 |
| 4 | 4 | 4 | 43 | （6） | （2i） |
| （4i） | 87 | 38 | 38 | 3 | 6 |
| 6 | 6 | 6 | c | \％ | ¢ |
| $\approx$ | 5 | 8 | （3） | （3） | （8） |
| \＄ | （8） | ＊ | （8） | （1） | （1） |
| 18 | 牫 | 12 |  | 48 | 朗 |
| （8） | 43 | （4） | （4） | 4 | 23 |
| 2 | 28 | 4 | 3 | 3 | 5 |
| 8 |  |  |  |  |  |




Evaluating $\Gamma_{\phi}$ is expensive: one of 5 parameters

| \% | cis | c\% | 18 | 昸 | 㲾 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \& | \% | 4) | 9 | d | 4 |
| 4 | 4 | 41 | 38 | (6i) | (2i) |
| (87) | (3) | 38 | 3 | 3 | 6 |
| 6 | 6 | 6 | \% | $\pm$ | 4 |
| 2 | 5 | (3) | (3) | \% 3 | (8) |
| 8 | \$ | * | (6) | (1) | 9 |
| 13 | 13 | 13 | (13) | (1) | (8) |
| 43 | 43 | (4) | (8) | (8) | (8) |
| 2 | 23 | \% | 3 | 5 | 5 |
| E |  |  |  |  |  |




## Domain reduction: branch and bound, illustrated for 1D



1. To save time, we compute probabilities of orientations at low resolution.


2. We place bounds on how much higher the probabilities could be at full resolution.

Given a cutoff value, we evaluate over a fraction of
the domain.



Branch-and-bound in cryoSPARC for integrating over orientations


## Branch-and-bound in cryoSPARC for integrating over orientations



## Branch-and-bound in cryoSPARC for integrating over orientations



## Stochastic gradient descent to avoid model bias

 using randomly selected subsets of single-particle images (b)

## In Relion, 2D and 3D classification and refinement use the same algorithm

| Quantity | Meaning in 3D classification | Meaning in 2D classification |
| :---: | :--- | :--- |
| $V_{k}$ | Class volume | Class average image |
| $\phi$ | 3 Euler angles of orientation + 2 translations | 1 angle of rotation + 2 translations |
| $\mathbf{P}_{\phi}$ | Projection operator 3D $\rightarrow$ 2D | Image rotation and shift |
| $\mathbf{P}_{\phi}^{\mathrm{T}}$ | Back-projection operator 2D $\rightarrow$ 3D | Reverse shift and rotation |

