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Correlation and particle picking

Single-particle reconstruction

Maximum-likelihood methods

Theoretical basis of single-particle reconstruction



Image processing with Fourier transforms

 

 

 

 

 

g(x, y) → G(u, v)

g ⋆ h → GH

g ⊗ h → GH*

g(x′ , y′ ) → G(u′ , v′ )

Py g(x, y) → G(u,0)

Fourier Transform 

Convolution 

Correlation 

Rotation 

Projection



Convolution and correlation

-Correlation

-Smiley face in a field, without and with noise.

-Particle picking


Convolution


 





f(x, y) = g ⋆ h

f(x, y) = ∫ ∫ g(x − s, y − t) h(s, t) ds dt

→ F(u, v) = G(u, v)H(u, v)

Correlation

 





c(x, y) = g ⊗ h
c(x, y) = ∫ ∫ g(x + s, y + t) h(s, t) ds dt

→ C(u, v) = G(u, v)H*(u, v)



Correlation locates motifs in images

Correlation

 
c(x, y) = g ⊗ h

c(x, y) = ∫ ∫ g(x + s, y + t) h(s, t) ds dt

Reference  h(set) Signal  g(x,y) Cross-correlation  g(x,y)

Translational cross-correlation function




                      

Cor(x, y) = X ⊗ R
= ∑

s,t
h(s, t) g(x + s, y + t)

Correlation is like convolution.

The FT pair is:   
g ⊗ h → GH*

, Cor(x, y)



Correlation locates motifs in images

Correlation

 
c(x, y) = g ⊗ h

c(x, y) = ∫ ∫ g(x + s, y + t) h(s, t) ds dt

Reference  h(set) Signal  g(x,y) Cross-correlation  g(x,y), Cor(x, y)

Translational cross-correlation function




                      

Cor(x, y) = X ⊗ R
= ∑

s,t
h(s, t) g(x + s, y + t)



A correlation-based particle picker

3D Reference
CTF-filtered projections and decoys



A correlation-based particle picker

A micrograph



A correlation-based particle picker

Max of correlations 
with decoy references



A correlation-based particle picker

Max of correlations 
with particle references



A correlation-based particle picker

Green: found particles

Red dots: decoys



 A correlation-based particle picker

Best-matching 
references



Correlation and particle picking

Single-particle reconstruction

Maximum-likelihood methods



(Slides demonstrating tomographic reconstruction)

How to get 3D structures from 2D images? The Fourier slice theorem

Fourier  
transform



Fourier  
transform

Insert as a slice 
in 2D field

Extract the 
1D projection

2D inverse 
Fourier  
transform

Tomographic reconstruction: 2D image from 1D projections
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Fourier  
transform

Insert as a slice 
in 2D field

Extract the 
1D projection

2D inverse 
Fourier  
transform

Tomographic reconstruction: 2D image from 1D projections



Determining the orientation angles: example from the TRPV1 dataset

Projection

Simulated image

Projection

Simulated image

1/4 of a micrograph - empiar.org/10005 One particle image

http://empiar.org/10005


The probability of orientations  is remarkably sharpP(ϕ |X, V)



Single-particle reconstruction

We assume that image  comes from a projection 
in direction  of volume  according to




The goal is to discover the volume 

Xi
ϕi V

Xi = CiPϕi
V + Ni

V

Xi

Project along ϕi

V

8,310 
micrographs

Demo Particle Picker
3,007,380 particles

Laplacian-of-Gaussian
Auto-picking

2,565,954 particles

2D classifications
318,401 particles 

selected

2D classifications
600,918 particles 

selected

Combine and repeated particles are removed
905,664 particles

3D classification

13.9% 12.7% 53.5% 9.1%10.8%

3D classification 383,936 particles

8.4% 11.3%25.8%54.6%

3D Refine
C4 Symmetry 

266,495 particles

3.6 Å

CTF Refine
Bayesian polishing
Masked 3D Refine

C4 Symmetry 
266,495 particles

3.0 Å

Sup Figure.1 Cryo-EM data processing work flow of inactivated Kv1.2 (W366F). 

The first step is to compare images to 
determine orientations…



There are various ways to compare images

Define the “reference” 
as the true image  

modified by the CTF :





We wish to compare a 
data image  with it.

A
C

R = CA

X

Squared difference 

       


                        


Correlation 



           


Correlation coefficient 

∥X − R∥2 = ∑
j

(𝖷j − 𝖱j)2

= ∥X∥2 − 2X ⋅ R + ∥R∥2

Cor = X ⋅ R
= ∑

j
𝖷j𝖱j

CC = X ⋅ R
|X | |R |

Notation used here:


A single pixel in the image :

            —the   pixel (out of  pixels total)


The  image in the dataset :

          

X
𝖷j jth J

ith X
Xi



First the 2D problem: reconstruct an image

Model of an image


X = CA + N

We can interpret C as either the CTF 
operator (x,y space), or just the 

multiplicative CTF factor (u,v space)

     “true” image

     contrast-transfer function

     noise image

A
C
N



Modeling the CTF effect on an image

Can we do the 
deconvolution:

 ??Ã = X/C

X = CA + N

A C C × AC

X



How to undo the CTF effects?

1.  Phase flipping 

Ã = sgn(C)X

Ã

Ã

A



How to undo the CTF effects?

1.  Phase flipping 

 

2. Wiener filter 

 

Ã = sgn(C)X

Ã = CX
C2 + k

ÃA



How to undo the CTF effects in noisy images?

1.  Phase flipping 

 

2. Wiener filter 

 

Ã = sgn(C)X

Ã = CX
C2 + k



How to undo the CTF effects in noisy images?

3. Wiener from multiple images 

 Ã =
∑N

i CiXi

k + ∑N
i C2

i



How to undo the CTF effects in noisy images?

3. Wiener from multiple images 

 Ã =
∑N

i CiXi

k + ∑N
i C2

i

 k = 1/SNR

= |N |2

|A |2

3. Wiener from multiple images 

 Ã =
∑N

i CiXi

k(s) + ∑N
i C2

i

 

    

k(s) = 1/SNR

= |N |2

|A |2



Image restoration when spectral SNR is known

Restoration  
from multiple images 

 

The defocus varies to fill 
in CTF zeros


Ã =
∑N

i CiXi
1

SSNR + ∑N
i C2

i



Image restoration when spectral SNR is known

Restoration  
from multiple images 
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Image restoration when spectral SNR is known

Restoration  
from multiple images 

 

The defocus varies to fill 
in CTF zeros


Ã =
∑N

i CiXi
1

SSNR + ∑N
i C2

i



3D reconstruction in FREALIGN: correlation and Wiener filtering

A Frealign iteration, refining  to , consists of 
two steps:


1. Vary the projection direction  to find the projection 
image    that maximizes the correlation 
coefficient for each image ,


              . 


2. Knowing the best projection direction  for each 
image , update the volume according to 


         


V(n) V(n+1)

ϕi
Ri = CiPϕi

V(n)

Xi

CC = Xi ⋅ Ri

|Xi | |Ri |

ϕi
Xi

V(n+1) =
∑N

i PT
ϕi

CiXi

k + ∑N
i PT

ϕi
C2

i

Notes


1.  is the CTF corresponding to the 
image .


2. The projection operator  also 
includes translations.  So  consists of 
five variables: .


3.  is the corresponding back 
projection operator.  In Fourier space it 
yields a volume that is all zeros except 
for values along a slice.


4. The sum 


                


     is therefore the insertion of N slices.

Ci
Xi

Pϕ
ϕ

ϕ = {α, β, γ, tx, ty}

PT
ϕi

N

∑
i

PT
ϕi

CiXi



3D reconstruction in FREALIGN—iterations

1.Start with a preliminary structure 


2.For each particle image  find the projection angles 
 that gives the best match, so 


3.Use the Frealign iteration to produce a new 3D 
volume 

V(n), n = 1

Xi
ϕi Xi ≈ CiPϕi

V(n)

V(n+1)

Iterate



 3D Classification in FREALIGN

Suppose our model is that an image X can come 
from any of  different particle types 

 and our images are selected 
randomly from these volumes, projected with 
noise added.


K
V1, V2, . . VK

2. Update the volume according to 


      
V(n+1)
k =

∑i∈k PT
ϕi

CiXi

kw + ∑i∈k PT
ϕi

C2
i

1. The references are


         .


We assign  such that  yields the 
projection (with direction ) that gives the 
highest correlation coefficient with .


Rik = CiPϕi
Vk

ki Vki

ϕi
Xi



Correlation and particle picking

Single-particle reconstruction

Maximum-likelihood methods



Probabilities, another way to compare images

w

XjRj

P(Xj |Rj)

Image model: 


Probability of the jth pixel value:





Probability of observing an entire image

that comes from :





X = R + N

P(𝖷j |𝖱j) = w
2πσ2

e−(𝖷j−𝖱j)2/2σ2

R

P(X |R) = wJ

(2πσ2)J/2 e−||X−R||2/2σ2

 is the finesse of the pixel 
intensity measurements. We’ll 

ignore it (set it to 1).

w

1

1



Simplified image probability

XjRj

P(Xj |Rj)

Probability of observing an image that

comes from :





_______________

(The normalization factor  we’ll treat as a constant 

and ignore it.)


R
P(X |R) = c e−||X−R||2/2σ2

c


X = R + N



The Likelihood
Let  be our “stack” of particle images. We’d like to find 
the best 3D volume  consistent with these data, say maximizing the 
posterior probability

                                    .


According to Bayes’ theorem,


                         .


•  doesn’t depend on  so we can ignore it.


•  is called the prior probability. It reflects any knowledge about 
that we have before considering the data set. 

•  is something we can calculate. It’s called the likelihood of .

X = {X1 . . XN}
V

P(V |X)

P(V |X) = P(X |V) P(V)
P(X)

P(X) V

P(V) V

P(X |V) V

prior      Experiment      posterior 
 

→ →

Lik(V) = P(X |V)

likelihood



We know how to compute the likelihood
We know that


                  
P(X |V, ϕ) = c e−∥X−CPϕV∥2/2σ2

Maximum-likelihood reconstruction is finding  that maximizes .V L

To get the likelihood for one image we just integrate over all the ’s:


                  ,


assuming  is uniform.


ϕ

P(X |V) = ∫ P(X |V, ϕ) P(ϕ) dϕ

P(ϕ)

To get the likelihood for the whole dataset we compute the product over all the images,


                  ,
P(X |V) =
N

∏
i

∫ P(Xi |V, ϕ) dϕ

For numerical sanity, we compute the log likelihood,


                  .L =
N

∑
i

ln (∫ P(Xi |V, ϕ) dϕ)



Maximum-likelihood estimation is asymptotically unbiased

If the size of the dataset grows without bounds

(and the number of parameters to be estimated does not) 

Maximum Likelihood converges to the right answer.



To maximize the likelihood, we’ll need a probability function Γ(ϕ)

A projection




Probability of observing an image  if we know :





Probability of a projection direction for :





A = PϕV

Xi ϕ

P(Xi |V, ϕ) = c e−||Xi−CPϕV||2/2σ2

Xi

Γi(ϕ) = P(ϕ |Xi, V) = P(Xi |V, ϕ)
∫ P(Xi |V, ϕ)dϕ



The E-M algorithm finds a local maximum of the likelihood

The Expectation-Maximization (E-M) algorithm has this iteration, 
guaranteed to increase the likelihood:


            


…Relion’s compute-intensive “Expectation” step is basically the 

evaluation of  for each image 


V(n+1) =
∑i ∫ Γ(n)

i (ϕ)PT
ϕCiXi dϕ

σ2

Tτ2 + ∑i ∫ Γ(n)
i (ϕ)PT

ϕC2
i dϕ

Γi(ϕ) Xi

For comparison, here is Frealign’s 
iteration: 


1. Find the best orientation  
for each particle image 


2. Update the volume according 
to


       

ϕi
Xi

V(n+1) =
∑i PT

ϕi
CiXi

k + ∑i PT
ϕi

C2
i



3D Classification

We can use Expectation-Maximization to optimize  different 
volumes  simultaneously. The formula is essential the 
same except that the function  depends also on :

                                       


The iteration, guaranteed to increase the likelihood:


            


…Relion’s compute-intensive “Expectation” step is basically the 

evaluation of  for each image  and volume 


K
V1, V2, . . VK

Γ k
Γ(n)

ϕi,k

V(n+1)
k =

∑i ∫ Γ(n)
i,k (ϕ)PT

ϕCiXi dϕ
σ2

Tτ2 + ∑i ∫ Γ(n)
i,k (ϕ)PT

ϕC2
i dϕ

Γi,k(ϕ) Xi Vk

For comparison, here is Frealign’s 
iteration: 


1. Find the best orientation  for 
each particle image 


2. Update the volume according to


       

ϕi
Xi

V(n+1) =
∑i PT

ϕi
CiXi

k + ∑i PT
ϕi

C2
i



The orientation determination is the most expensive step

No. operations 



The orientation determination is the most expensive step

No. operations 

e.g. N=105, n=128, t=7 

No. operations ≈ 6 x 1017 ≈ 19 CPU-years 

With efficient programs, ~ 1 CPU-day



Evaluating  is expensive: one of 5 parametersΓψ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ

How to decrease the effort?



1. To save time, we 
compute probabilities 
of orientations at low 

resolution.


2. We place bounds on 
how much higher the 

probabilities could be at 
full resolution.


Given a cutoff value, we 
evaluate over a fraction of 

the domain. 

Domain reduction: branch and bound, illustrated for 1D
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V/A-ATPase particle images23, the algorithm discerned three 
different conformational states for the enzyme, again from ran-
dom initializations (Fig. 2b). These three states corresponded 
to the three different rotational positions of the central rotor of 
the enzyme24. This finding is particularly notable, as previous 
analysis with reference-based classification12 and the same data 
set of images only detected two of the three states23. The newly 
identified third rotational state is the conformation of the enzyme 
that differs the most from the other two. This observation illus-
trates the importance of reference-free ab initio classification for 
unbiased identification of states that differ from the structures 
expected to be present in the data set.

Branch and bound: rapid refinement of maps to high 
resolution
The primary computational burden in map refinement is the 
search for orientation parameters that best align each 2D single- 
particle image to a 3D density map. The branch-and-bound algo-
rithm design paradigm25 can accelerate this search by quickly and 
inexpensively ruling out large regions of the search space that 
cannot contain the optimum of the objective function (Fig. 3a).

In cryo-EM map refinement, the optimal pose for a particle 
image minimizes the error between the observed image and a 
projection of the 3D map. To find this optimal pose using the 
branch-and-bound approach (Fig. 3b), an inexpensive lower 
bound on the error is first computed across the entire space of 
poses. At the pose that minimizes this lower bound, the compu-
tationally expensive true error function is evaluated. All regions 
of the search space where the lower bound exceeds this computed 
value of the true error function cannot contain the optimal pose 

and can be excluded from further search. A new lower bound is 
then calculated that fits more tightly to the true error function but 
is more expensive to calculate. The process of evaluating the error 
function at the optimum of the lower bound, discarding regions 
of search space where the true error is above the lower bound, and 
recalculating a tighter fitting lower bound, is repeated until only 
the optimal pose remains.

Although conceptually straightforward, application of the 
branch-and-bound strategy requires an informative and inexpen-
sive lower bound for the objective function. Suitable lower bounds 
are well known for other problems26,27, but use of the method for 
determining the orientations of single-particle cryo-EM images 
required derivation of an appropriate bound (Supplementary 
Note 2). The derivation we describe is based on the signal-to-
noise ratio of single-particle images over a range of resolutions. 
It is worth emphasizing that the branch-and-bound approach is 
a global pose search that requires no prior estimate of an optimal 
pose. In contrast, strategies to accelerate orientation determina-
tion based solely on local search risk selection of a pose that is 
not the global optimum12,13. In practice, an approximation to this 
branch-and-bound search that was found to be equally effective 
but even more efficient is used (Supplementary Note 2).

We implemented the branch-and-bound approach and applied it 
to high-resolution structure determination from several published  
data sets: the 20S proteasome from Thermoplasma acidophilum28, 
the 80S ribosome from Plasmodium falciparum29, amphipol- 
solubilized rat TRPV1 (ref. 3), as well as the T. thermophilus  
V/A-ATPase23. Computations were carried out with the same 
desktop workstation and single NVIDIA Tesla K40 GPU used 
for ab initio SGD calculations. Applied to 35,645 TRPV1 particle  
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Figure 3 | The branch-and-bound approach to high-resolution cryo-EM map refinement. (a) Two iterations of a simplified 1D representation of the 
branch-and-bound approach. Candidate poses are iteratively eliminated by evaluation of an inexpensive lower bound over all poses, and the true  
error function at the minimum of the lower bound. (b) For cryo-EM images, the true error function over all poses (top left) for an individual particle  
(top right) is never evaluated. Instead, the entire lower bound is computed (middle left), the true error is calculated at the minimum of the bound,  
and all poses where the lower bound exceeds this calculated error are eliminated (middle right). A tighter lower bound is evaluated and the process 
repeated until the optimum pose is identified (bottom left and right).

Branch-and-bound in cryoSPARC for integrating over orientations
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different conformational states for the enzyme, again from ran-
dom initializations (Fig. 2b). These three states corresponded 
to the three different rotational positions of the central rotor of 
the enzyme24. This finding is particularly notable, as previous 
analysis with reference-based classification12 and the same data 
set of images only detected two of the three states23. The newly 
identified third rotational state is the conformation of the enzyme 
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trates the importance of reference-free ab initio classification for 
unbiased identification of states that differ from the structures 
expected to be present in the data set.
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search for orientation parameters that best align each 2D single- 
particle image to a 3D density map. The branch-and-bound algo-
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cannot contain the optimum of the objective function (Fig. 3a).

In cryo-EM map refinement, the optimal pose for a particle 
image minimizes the error between the observed image and a 
projection of the 3D map. To find this optimal pose using the 
branch-and-bound approach (Fig. 3b), an inexpensive lower 
bound on the error is first computed across the entire space of 
poses. At the pose that minimizes this lower bound, the compu-
tationally expensive true error function is evaluated. All regions 
of the search space where the lower bound exceeds this computed 
value of the true error function cannot contain the optimal pose 

and can be excluded from further search. A new lower bound is 
then calculated that fits more tightly to the true error function but 
is more expensive to calculate. The process of evaluating the error 
function at the optimum of the lower bound, discarding regions 
of search space where the true error is above the lower bound, and 
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the optimal pose remains.

Although conceptually straightforward, application of the 
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sive lower bound for the objective function. Suitable lower bounds 
are well known for other problems26,27, but use of the method for 
determining the orientations of single-particle cryo-EM images 
required derivation of an appropriate bound (Supplementary 
Note 2). The derivation we describe is based on the signal-to-
noise ratio of single-particle images over a range of resolutions. 
It is worth emphasizing that the branch-and-bound approach is 
a global pose search that requires no prior estimate of an optimal 
pose. In contrast, strategies to accelerate orientation determina-
tion based solely on local search risk selection of a pose that is 
not the global optimum12,13. In practice, an approximation to this 
branch-and-bound search that was found to be equally effective 
but even more efficient is used (Supplementary Note 2).

We implemented the branch-and-bound approach and applied it 
to high-resolution structure determination from several published  
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solubilized rat TRPV1 (ref. 3), as well as the T. thermophilus  
V/A-ATPase23. Computations were carried out with the same 
desktop workstation and single NVIDIA Tesla K40 GPU used 
for ab initio SGD calculations. Applied to 35,645 TRPV1 particle  

Azimuth angle

True error
(expensive)

Lower bound level 1
(inexpensive)

True error at lower
bound minimum

(inexpensive)

Optimal pose

Candidate poses

Branch-and-bound iteration 1

Azimuth angle

True error
(expensive)

Lower bound level 2 (inexpensive)

True error at lower bound minimum
(inexpensive)

Optimal pose

Remaining candidate poses

Branch-and-bound iteration 2

Iteration 1 candidates

Reference structure

a

Lower bound, iteration 2

Optimal pose located without
exhaustively computing true
error over all poses

Optimal poseAzimuth

El
ev

at
io

n

El
ev

at
io

n

High
error

b

Filtered

Azimuth

Prune
using true error
computed at 

Prune
using true error
computed at 

Minimum lower bound

Minimum lower bound

Im
ag

e 
al

ig
nm

en
t e

rr
or

Im
ag

e 
al

ig
nm

en
t e

rr
or

True error over all poses
(expensive, not computed)

Particle image

Lower bound iteration 1

Remaining candidate poses, iteration 2

Remaining candidate poses, iteration 1

Low
error

Figure 3 | The branch-and-bound approach to high-resolution cryo-EM map refinement. (a) Two iterations of a simplified 1D representation of the 
branch-and-bound approach. Candidate poses are iteratively eliminated by evaluation of an inexpensive lower bound over all poses, and the true  
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and all poses where the lower bound exceeds this calculated error are eliminated (middle right). A tighter lower bound is evaluated and the process 
repeated until the optimum pose is identified (bottom left and right).

Branch-and-bound in cryoSPARC for integrating over orientations
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different conformational states for the enzyme, again from ran-
dom initializations (Fig. 2b). These three states corresponded 
to the three different rotational positions of the central rotor of 
the enzyme24. This finding is particularly notable, as previous 
analysis with reference-based classification12 and the same data 
set of images only detected two of the three states23. The newly 
identified third rotational state is the conformation of the enzyme 
that differs the most from the other two. This observation illus-
trates the importance of reference-free ab initio classification for 
unbiased identification of states that differ from the structures 
expected to be present in the data set.

Branch and bound: rapid refinement of maps to high 
resolution
The primary computational burden in map refinement is the 
search for orientation parameters that best align each 2D single- 
particle image to a 3D density map. The branch-and-bound algo-
rithm design paradigm25 can accelerate this search by quickly and 
inexpensively ruling out large regions of the search space that 
cannot contain the optimum of the objective function (Fig. 3a).

In cryo-EM map refinement, the optimal pose for a particle 
image minimizes the error between the observed image and a 
projection of the 3D map. To find this optimal pose using the 
branch-and-bound approach (Fig. 3b), an inexpensive lower 
bound on the error is first computed across the entire space of 
poses. At the pose that minimizes this lower bound, the compu-
tationally expensive true error function is evaluated. All regions 
of the search space where the lower bound exceeds this computed 
value of the true error function cannot contain the optimal pose 

and can be excluded from further search. A new lower bound is 
then calculated that fits more tightly to the true error function but 
is more expensive to calculate. The process of evaluating the error 
function at the optimum of the lower bound, discarding regions 
of search space where the true error is above the lower bound, and 
recalculating a tighter fitting lower bound, is repeated until only 
the optimal pose remains.

Although conceptually straightforward, application of the 
branch-and-bound strategy requires an informative and inexpen-
sive lower bound for the objective function. Suitable lower bounds 
are well known for other problems26,27, but use of the method for 
determining the orientations of single-particle cryo-EM images 
required derivation of an appropriate bound (Supplementary 
Note 2). The derivation we describe is based on the signal-to-
noise ratio of single-particle images over a range of resolutions. 
It is worth emphasizing that the branch-and-bound approach is 
a global pose search that requires no prior estimate of an optimal 
pose. In contrast, strategies to accelerate orientation determina-
tion based solely on local search risk selection of a pose that is 
not the global optimum12,13. In practice, an approximation to this 
branch-and-bound search that was found to be equally effective 
but even more efficient is used (Supplementary Note 2).

We implemented the branch-and-bound approach and applied it 
to high-resolution structure determination from several published  
data sets: the 20S proteasome from Thermoplasma acidophilum28, 
the 80S ribosome from Plasmodium falciparum29, amphipol- 
solubilized rat TRPV1 (ref. 3), as well as the T. thermophilus  
V/A-ATPase23. Computations were carried out with the same 
desktop workstation and single NVIDIA Tesla K40 GPU used 
for ab initio SGD calculations. Applied to 35,645 TRPV1 particle  
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Figure 3 | The branch-and-bound approach to high-resolution cryo-EM map refinement. (a) Two iterations of a simplified 1D representation of the 
branch-and-bound approach. Candidate poses are iteratively eliminated by evaluation of an inexpensive lower bound over all poses, and the true  
error function at the minimum of the lower bound. (b) For cryo-EM images, the true error function over all poses (top left) for an individual particle  
(top right) is never evaluated. Instead, the entire lower bound is computed (middle left), the true error is calculated at the minimum of the bound,  
and all poses where the lower bound exceeds this calculated error are eliminated (middle right). A tighter lower bound is evaluated and the process 
repeated until the optimum pose is identified (bottom left and right).

Branch-and-bound in cryoSPARC for integrating over orientations
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if driven by hardware advances alone16. Based on the combina-
tion of algorithms, inexpensive hardware, and an easy-to-use  
graphical user interface, cryoSPARC will enable nonspecialist 
cryo-EM users to process data rapidly without needing to pur-
chase or set up their own computer clusters and with minimal 
user input and expertise.

RESULTS
Formally, structure determination by cryo-EM is an optimiza-
tion problem and may be described in a Bayesian likelihood  
framework12,17: 
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The aim of the optimization is to find the 3D structures (V1 
to VK) that best explain the observed images (X1 to XN) by  

(1)(1)

marginalizing over class assignment (j) and the unknown pose 
variable (Fi), which describes a 3D rotation and a 2D translation 
for each single-particle image.

Numerical optimization problems have been studied extensively 
in computer science18. Traditionally, optimization is formulated 
as the maximization of a single, monolithic objective function. 
With this approach, the variables of a function are iteratively 
altered until the ‘best’ values, which give an optimum value to 
the function, are identified. Sophisticated algorithms for iterative 
optimization have been developed19 and are central to a myriad 
of problems in data modeling and engineering. In the case of 
cryo-EM map calculation, the objective function (equation (1)) 
quantifies how well cryo-EM maps explain the collected experi-
mental images, and the variables in the function include the 3D 
maps represented as density voxels on a 3D grid.

We use an SGD optimization scheme to quickly identify one 
or several low-resolution 3D structures that are consistent with a  
set of observed images. This algorithm allows for ab initio hetero-
geneous structure determination with no prior model of the 
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Figure 1 | Stochastic gradient descent for cryo-EM map calculation. (a) Iterative refinement methods are sensitive to initialization. An arbitrary 
initialization far from the correct 3D map will be refined into an incorrect structure that attains a locally optimal probability within the space of all 3D 
maps. An accurate initialization will be refined to the correct structure. Iterative refinement uses all single-particle images in a data set to compute 
each step. (b) Random selection of particle images in the SGD algorithm. At each iteration, a different small random selection of images is used to 
approximate the true optimization objective. Each iteration may use a different number of images. (c) Stochastic gradient descent (SGD) algorithm 
enables ab initio structure determination through insensitivity to initialization. An arbitrary computer-generated random initialization is incrementally 
improved by many noisy steps. Each step is based on the gradient of the approximated objective function obtained by random selection in b. These 
approximate gradients do not exactly match the overall optimization objective. The success of SGD is commonly explained by the noisy sampling 
approximation allowing the algorithm to widely explore the space of all 3D maps to finally arrive near the correct structure.



In Relion, 2D and 3D classification and refinement use the same algorithm
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