
Algorithms and Foundational Math


Part 1b



The Fourier transform in one dimension



Fourier reconstruction of a Gaussian function



“Converged” at 6 terms



The Fourier Transform gives us the coefficients
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The formulas

Fourier transform





Inverse Fourier transform


G(u) = ∫ g(x)e−i2πuxdx

g(x) = ∫ G(u)e+i2πuxdu

Example: 

 g(x) = e−πx2

G(u) = e−πu2



Fourier reconstruction of a rectangular function



Nowhere near convergence at 10 terms



The Fourier Transform of rect(x) is sinc(u)
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rect(x) → sin(πu)
πu

 is also known as:   
sin(πu)

πu
sinc(u)



Fourier transform pairs

 

 

e−πx2 → e−πu2

rect(x) → sin(πu)
πu

δ(x) → 1



1D Fourier transform properties

 

 

 

 

g(x) + h(x) → G(x) + H(x)

ag(ax) → G(u/a)

g(x − b) → G(u)e−i2πub

g ⋆ h → G(u)H(u)

Linearity 

Scale 

Shift 

Convolution



Convolution with a Gaussian kernel

Convolution


  means:
f(x) = g ⋆ h

f(x) = ∫ g(x − s)h(s)ds



Convolution with a Gaussian kernel

FT
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—Real part
—Imag part

f(x)= F(u)=



What about de-convolution?

Filter
f(x)=

Deconvolve?

If , shouldn’t we be able to 
recover , or at least a good approximation 

 by just dividing by ?


That is,

     and    

F(u) = G(u)H(u)
g

g′ ≈ g H

G′ (u) = F(u)
H(u) g′ (x) ← G′ (u)IFT



Deconvolution—the danger is dividing by small numbers
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1/H(u)IFT{1/H(u)}

Original G(u)



The Fourier transform in two dimensions



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



2D Fourier transform





2D  inverse Fourier transform


G(u, v) = ∫ ∫ g(x, y) e−i2π(ux+vy)dx dy

g(x, y) = ∫ ∫ G(u, v) ei2π(ux+vy)du dv



2D Fourier transform properties

 

 

 

 

ab g(ax, by) → G(u/a, v/b)

g(x − a, y − b) → G(u, v)e−i2π(au+bv)

g * h → GH

g(x′ , y′ ) → G(u′ , v′ )

Py g(x, y) → G(u,0)

Scale 

Shift 

Convolution 

Rotation 

Projection



Convolution in 2D




  

G ⋆ H = ∬ g(x − s, y − t) h(s, t) ds dt



Convolution with a Gaussian

FT FT IFT



Visualizing the contrast transfer function

X

X̃ C̃

C Y = X ⋆ C

Ỹ = X̃C̃ | Ỹ |2

Y * Y

autocorrelation



Convolution with a lattice

FT FT IFT



An undersampling lattice

FT FT IFT



The rotation property

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy

2D Fourier Transform

G(u) = ∫ ∫ g(x)e−i2π(u⋅x)d2x
FT using 2D vectors

The dot-product is invariant under rotations!

Let  signify a rotation, and



 


then

 


or alternatively,  


  

Rθ
(x′ , y′ ) = Rθ (x, y)
(u′ , v′ ) = Rθ (u, v)

g(x′ , y′ ) → G(u′ , v′ )

g(Rθx) → G(Rθu)

FT



The Fourier Slice Theorem

Projection

 3 

      (16) 
 
where the integral is taken over the full y extent of the object. 
 

Now suppose that we know the Fourier transform of the density distribution, which we 
will call F(u,v).  It can be written as 

 
    (17) 

 
If we evaluate it at v=0, we get 
 

  

 
which is just the (1D) Fourier transform of the projection g(x), 
 
 %(', 0) = ∫-(.)/0123456.     (18) 
 
Thus the projection of an object is a section of its Fourier transform.  In pictures: 
 

 
 
This, plus the rotation property of Fourier transforms, is all we are going to need.  Recall that if 
we rotate a 2D function, its FT rotates similarly.  This means that if we rotate the object and then 
collect a projection, we will have obtained a different section of the 2D FT.  If we collect enough 
such projections, we can fill in the whole FT.  Then by transforming back, we obtain the original 
density map of the object. 
 
This procedure is how computed tomography works, and is also how 3D molecular structures are 
obtained.  In the latter case, the 3D version of the projection theorem says, a 2D projection is 
corresponds to a plane (a central section) of the 3D Fourier transform. 
 
To make a 3D reconstruction from 2D projections of an object, you compute the FT of each 
projection image, which gives you a set of values in a plane.  Then you “insert” it into a 3D 

    g(x) = f (x ,y)dy∫

    F(u, v) = f(x, y)e−i2π (ux+ v y)dxdy∫∫

    

F(u, 0) = f (x ,y)e−i2π (ux )dxdy∫∫
= f (x ,y)dy∫[ ]∫ e−i2πuxdx

Slice

g(x, y) G(u, v)

Pyg
x G(u,0)

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy

 

            

G(u,0) = ∫ (∫ g(x, y)dy) e−i2π(ux)dx

= ℱ{Pyg}

Pyg(x, y) = ∫ g(x, y)dy



Reconstruction using the Fourier Slice Theorem

Projection

 3 

      (16) 
 
where the integral is taken over the full y extent of the object. 
 

Now suppose that we know the Fourier transform of the density distribution, which we 
will call F(u,v).  It can be written as 

 
    (17) 

 
If we evaluate it at v=0, we get 
 

  

 
which is just the (1D) Fourier transform of the projection g(x), 
 
 %(', 0) = ∫-(.)/0123456.     (18) 
 
Thus the projection of an object is a section of its Fourier transform.  In pictures: 
 

 
 
This, plus the rotation property of Fourier transforms, is all we are going to need.  Recall that if 
we rotate a 2D function, its FT rotates similarly.  This means that if we rotate the object and then 
collect a projection, we will have obtained a different section of the 2D FT.  If we collect enough 
such projections, we can fill in the whole FT.  Then by transforming back, we obtain the original 
density map of the object. 
 
This procedure is how computed tomography works, and is also how 3D molecular structures are 
obtained.  In the latter case, the 3D version of the projection theorem says, a 2D projection is 
corresponds to a plane (a central section) of the 3D Fourier transform. 
 
To make a 3D reconstruction from 2D projections of an object, you compute the FT of each 
projection image, which gives you a set of values in a plane.  Then you “insert” it into a 3D 

    g(x) = f (x ,y)dy∫

    F(u, v) = f(x, y)e−i2π (ux+ v y)dxdy∫∫

    

F(u, 0) = f (x ,y)e−i2π (ux )dxdy∫∫
= f (x ,y)dy∫[ ]∫ e−i2πuxdx

Slices

g(x, y) G(u, v)

Pyg
x G(u,0)

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy

 

            

G(u,0) = ∫ (∫ g(x, y)dy) e−i2π(ux)dx

= ℱ{Pyg}

Pyg(x, y) = ∫ g(x, y)dy The rotation property says:

If we can collect projections from all 
directions, we can construct all of G(u, v)

IFT



The discrete FT is what is calculated on a computer

2D Fourier transform





2D  discrete Fourier transform


G(u, v) = ∫ ∫ g(x, y) e−i2π(ux+vy)dx dy

G(k, l) = 1
N

N/2−1

∑
i,j=−N/2

g(i, j) e−i2π(ik+jl)/N



The DFT of a 32 x 32 pixel image has 32 x 32 complex pixel values

DFT



But the DFT of a real image has twofold redundancy



What is the pixel size of the transformed image?

Note that the sampling frequency  …… corresponds to twice the maximum 

                                                                                accessible frequency .


1/dx
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DFT
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