Algorithms and Foundational Math

Part 1b

The Fourier transform in one dimension

Fourier reconstruction of a Gaussian function

"Converged" at 6 terms

The Fourier Transform gives us the coefficients

$$
\begin{gathered}
\text { Fourier transform } \\
G(u)=\int g(x) e^{-i 2 \pi u x} d x
\end{gathered}
$$

Example:

$$
g(x)=e^{-\pi x^{2}}
$$

$$
G(u)=e^{-\pi u^{2}}
$$

Inverse Fourier transform

$$
g(x)=\int G(u) e^{+i 2 \pi u x} d u
$$

Fourier reconstruction of a rectangular function

Nowhere near convergence at 10 terms

The Fourier Transform of rect (x) is sinc(u)

Fourier transform pairs

$$
\begin{aligned}
e^{-\pi x^{2}} & \rightarrow e^{-\pi u^{2}} \\
\operatorname{rect}(\mathrm{x}) & \rightarrow \frac{\sin (\pi \mathrm{u})}{\pi \mathrm{u}} \\
\delta(x) & \rightarrow 1
\end{aligned}
$$

$$
\begin{aligned}
g(x)+h(x) & \rightarrow G(x)+H(x) & & \text { Linearity } \\
a g(a x) & \rightarrow G(u / a) & & \text { Scale } \\
g(x-b) & \rightarrow G(u) e^{-i 2 \pi u b} & & \text { Shift } \\
g \star h & \rightarrow G(u) H(u) & & \text { Convolution }
\end{aligned}
$$

Convolution with a Gaussian kernel

Convolution

$$
\begin{aligned}
& f(x)=g \star h \text { means: } \\
& f(x)=\int g(x-s) h(s) d s
\end{aligned}
$$

Convolution with a Gaussian kernel

What about de-convolution?

If $F(u)=G(u) H(u)$, shouldn't we be able to recover g, or at least a good approximation $g^{\prime} \approx g$ by just dividing by H ?

That is,
$G^{\prime}(u)=\frac{F(u)}{H(u)} \quad$ and $\quad g^{\prime}(x) \stackrel{\mathbb{I F T}}{\leftarrow} G^{\prime}(u)$

Deconvolution-the danger is dividing by small numbers

The Fourier transform in two dimensions

Fourier reconstruction of a 2D Gaussian function

Fourier reconstruction of a 2D Gaussian function

$$
G(u, v)=\iint g(x, y) e^{-i 2 \pi(u x+v y)} d x d y
$$

2D inverse Fourier transform

$$
g(x, y)=\iint G(u, v) e^{i 2 \pi(u x+v y)} d u d v
$$

$$
\begin{aligned}
a b g(a x, b y) & \rightarrow G(u / a, v / b) & & \text { Scale } \\
g(x-a, y-b) & \rightarrow G(u, v) e^{-i 2 \pi(a u+b v)} & & \text { Shift } \\
g * h & \rightarrow G H & & \text { Convolution } \\
g\left(x^{\prime}, y^{\prime}\right) & \rightarrow G\left(u^{\prime}, v^{\prime}\right) & & \text { Rotation } \\
P_{y} g(x, y) & \rightarrow G(u, 0) & & \text { Projection }
\end{aligned}
$$

Convolution in 2D

$$
G \star H=\iint g(x-s, y-t) h(s, t) d s d t
$$

Convolution with a Gaussian

$\mathbf{G}(u, v)$
$h(x, y)$

$H(u, v)$

AIFT
$\mathrm{C}(\mathrm{u}, \mathrm{v}) \mathrm{H}(\mathrm{u}, \mathrm{v})$

Visualizing the contrast transfer function

FT of object

Point-spread

CTF

FT of image

autocorrelation

Power spectrum

Convolution with a lattice

An undersampling lattice

2D Fourier Transform
$G(u, v)=\iint g(x, y) e^{-i 2 \pi(u x+v y)} d x d y$

FT using 2D vectors
$G(\mathbf{u})=\iint g(\mathbf{x}) e^{-i 2 \pi(\mathbf{u} \cdot \mathbf{x})} d^{2} \mathbf{x}$
The dot-product is invariant under rotations!
Let R_{θ} signify a rotation, and

$$
\left(x^{\prime}, y^{\prime}\right)=R_{\theta}(x, y)
$$

$$
\left(u^{\prime}, v^{\prime}\right)=R_{\theta}(u, v)
$$ then

$$
g\left(x^{\prime}, y^{\prime}\right) \rightarrow G\left(u^{\prime}, v^{\prime}\right)
$$

or alternatively,

$$
g\left(R_{\theta} \mathbf{x}\right) \rightarrow G\left(R_{\theta} \mathbf{u}\right)
$$

Reconstruction using the Fourier Slice Theorem

$$
\begin{aligned}
G(u, v) & =\iint g(x, y) e^{-i 2 \pi(u x+y y)} d x d y \\
G(u, 0) & =\int\left(\int g(x, y) d y\right) e^{-i 2 \pi(u x)} d x \\
& =\mathscr{F}\left\{P_{y g} g\right\}
\end{aligned}
$$

$$
P_{y g} g(x, y)=\int g(x, y) d y
$$

The rotation property says: If we can collect projections from all directions, we can construct all of $G(u, v)$

The discrete FT is what is calculated on a computer

$$
G(u, v)=\iint g(x, y) e^{-i 2 \pi(u x+v y)} d x d y
$$

2D discrete Fourier transform

$$
G(k, l)=\frac{1}{N} \sum_{i, j=-N / 2}^{N / 2-1} g(i, j) e^{-i 2 \pi(i k+j) 』}
$$

The DFT of a 32×32 pixel image has 32×32 complex pixel values

But the DFT of a real image has twofold redundancy

What is the pixel size of the transformed image?

Note that the sampling frequency $1 / d x$ \qquad corresponds to twice the maximum accessible frequency $n d u / 2$.

