

EMDataResource & Model Challenges

Cathy Lawson Rutgers University

NYSBC-NCCAT spring 2022 SPA short course – 3/17 lecture @4pm

EMDataResource (.org)

Established 2006 under NIH/NIGMS Support to:

- Develop Data Archives for 3DEM
- Promote Community Development of Validation and Standards via Workshops and Challenges

Lawson, Berman & Chiu (2020) Evolving Data Standards for CryoEM **Struct. Dynamics** <u>10.1063/1.5138589</u>

Cryo-EM Community

Key Early Workshop

2010 Validation Task Force

 Map evaluation by independent half-map FSC
Low-resolution map validation by tilt-pair
Model validation same as for X-ray and NMR
Call for further development: Map, Model Fitto-Map Validation

Henderson et al. (2012) Structure 20, 205-214 10.1016/j.str.2011.12.014

Full workshop list: <u>https://www.emdataresource.org/workshops.html</u>

Validation in a Changing Landscape

Maps Released by Resolution Range (Å) 2021-07-21

2010 (1st) Model Challenge

13 EMDB maps 2.5-24 Å Produce best models against selected maps
Explore segmentation, secondary structure detection, rigid body, flexible fitting, *ab initio*

- Established modelling community around a common problem
- Identified critical standardization issues related to data deposition
- Identified key issues to explore in future challenges

2016-2017 Map, Model Challenges

7 EMPIAR sets / 12 EMDB maps 2.5-5 Å

- Produce best maps from raw images
- Produce best models against maps
- □ Compare reconstruction, modeling practices
- Explore assessment strategies esp. model fit-to-map
- Innovative methods for map and model fit-to-map assessment introduced
- Map quality depended on participant level of experience
- Maps reported as same resolution looked different from each other
- Model quality was "all over the place"

2016-2017 Challenges Recommendations

7 EMPIAR sets / 12 EMDB maps 2.5-5 Å

□ Produce best maps from raw images

- Produce best models against maps
- Compare reconstruction, modeling practices
- □ Explore assessment strategies esp. model fit-to-map
- Map Resolution by independent half-map FSC: uniform definition + software implementation needed
- Novel model-based methods may be useful for estimating map resolvability
- Further review of global fitto-map metrics needed

2019 Model "Metrics" Challenge

4 EMDB maps 1.8-3.1 Å Produce best models against maps
Explore Model metrics with focus on Fit-to-Map

- cryo-EM maps ≤3 Å with limited conformational flexibility have excellent information content
- ab initio methods performed extremely well--though stumbled on ligands/ions
- Limited targets with a resolution series enabled observation of key metrics trends

2019 Challenge: Targets

Unified Data Resource for 3DEM

2019 Challenge: Pipeline

Andriy Kryshtafovych UC Davis

model-compare.emdataresource.org

Team ID*,		#		
name	Team Members	Models	Effort Type(s)	Software
10 уи	Xiaodi Yu	4	ab initio+manual	Phenix ²⁰ , Buccaneer ³⁷ , Chimera ³⁸ , Coot ²⁸ , Pymol
25 cdmd	Maxim Igaev, Andrea Vaiana, Helmut Grubmüller	4	optimization automated	CDMD ³⁹
27 kumar	Dilip Kumar	1	ab initio+manual	Phenix, Rosetta ⁴⁰ , Buccaneer, ARP/wARP ⁴¹ , Coot
28 ccpem	Soon Wen Hoh, Kevin Cowtan, Agnel Praveen Joseph, Colin Palmer, Martyn Winn, Tom Burnley, Mateusz Olek, Paul Bond, Eleanor Dodson	4	ab initio+manual	CCP-EM ⁴² , Refmac ¹² , Buccaneer, Coot, TEMPy ¹⁵⁻¹⁷
35 phenix	Pavel Afonine, Tom Terwilliger, Li-Wei Hung	4	ab initio+manual	Phenix, Coot
38 fzjuelich	Gunnar Schroeder, Luisa Schaefer	3	optimization automated	Phenix, Chimera, DireX ⁴³ , MDFF ⁴⁴ , CNS, Gromacs
41 arpwarp	Grzegorz Chojnowski	8	ab initio automated, ab initio+manual	Refmac, ARP/wARP, Coot
54 kihara	Daisuke Kihara, Genki Terashi	8	ab initio+manual	Rosetta, Mainmast ⁴⁵ , MDFF, Chimera
60 deeptracer	Liguo Wang, Dong Si, Renzhi Cao, Jianlin Cheng, Spencer A. Moritz, Jonas Pfab, Tianqi Wu, Jie Hou	10	ab initio automated, ab initio+manual	Cascaded-CNN ⁴⁶ , Chimera
73 singharoy	Mrinal Shekhar, Genki Terashi, Sumit Mittal, Daipayan Sarkar, Daisuke Kihara, Ken Dill, Alberto Perez, Abishek Singharoy	5	ab initio+manual, optimization automated	reMDFF ⁴⁷ , MELD ⁴⁸ , VMD, Chimera, Mainmast
82 rosetta	Frank DiMaio, Dan Farrell	8	ab initio automated, ab initio+manual	Rosetta, Chimera
90 mbaker	Matt Baker	2	ab initio+manual	Pathwalker ⁴⁹ , Phenix, Chimera, Coot
91 chiu	Greg Pintilie, Wah Chiu	2	optimization+manual	Phenix, Chimera, Coot

		Full map density	TEMPY CCC PHENIX CCbox		
	Correlation	Density within a mask TEMPy CCC_OV Segment Mander's Overlap (SMOC) PHENIX CCpeaks CCvol CCmask			
		Density-derived functions	TEMPY Mutual Information(MI) MI_OV Laplacian (LAP)		
Fit to Map		Density at atom positions	MAPQ Q-score: vs Reference Gaussians (r=0-2 Å)		
	FSC aumo	Single point	PHENIX Resolution Map-Model FSC = 0.5		
	FSC curve	Integration	REFMAC5 FSCavg		
	Atom Inclusion	1	TEMPy Envelope EMDB Atom Inclusion (AI_all)		
	Rotamer		EMRinger Z-score protein C_{γ} atom paths around $\chi 1$		
	Configuration		PHENIX Bond Bond angle Chirality Planarity Dihedral		
Coordinates	Conformation	Backbone	CaBLAM Co-trace Co-only virtual dihedrals CaBLAM Conformation Co and CO-containing virtual dihedrals MOLPROBITY Ramachandran		
Only		Sidechain	MOLPROBITY Rotamer		
	Clashes		MOLPROBITY Clashscore		
	Energy		PROQ3 energy and predicted features		
	Superposition	Ca Superposition	OPENSTRUCT RMSD-Ca		
Comparison		Distance cutoffs	OPENSTRUCT Global Distance Calculation (GDC) all sidechair Global Distance Test (GDT) total score high accuracy		
With Reference		Sequence assignment	PHENIX seq match Co atom position match overall score		
Model		*Multiple references	DAVIS-QA average of pairwise GDT_TS scores		
	Distances	Per chain	LDDT Local difference distance test		
		All chains	OPENSTRUCT oligomeric LDDT weighted oligomeric LDDT		
Comparison	Contacts	Contact area	CAD Contact Area Difference		
among Medele*		Shared contacts	OPENSTRUCT Quaternary Structure (QS) best, global		
wodels"		Hydrogen bonds	HBPLUS H-bond Precision all nonlocal Similarity all nonlocal		

Fit-to-Map: Score Correlations, all 63 models

Fit-to-Map: Cluster 1 vs Cluster 2

APOF 1.8 Å APOF 2.3 Å ADH 2.9 Å APOF 3.1 Å

2019 Challenge: Recommendations

- For researchers optimizing a model against a single map at near atomic resolution (2-3 Å), nearly all evaluated Fit-to-Map metrics behaved equivalently (exception: TEMPy ENV is more appropriate for lower resolution)
- □ For archive-wide ranking, the ideal Fit-to-Map metric will be insensitive to background noise, will not require estimated parameters that affect score value (resolution limit, threshold), and will yield overall better scores for maps with higher-resolution features. (Cluster 2!)
- CaBLAM and Molprobity cis-peptide detection are valuable tools for evaluating protein backbone conformation, especially when backbone carbonyl oxygens are not resolved (2.5-4 Å).

2021 Ligand Model Challenge

3 EMDB maps 1.9-2.5 Å Focus on ligands/waters/ions built into cryoEM maps
Is manual intervention needed? How to validate?

- wide spectrum of modeling workflows represented
- novel assessments to evaluate ligand pose, as well as traditional fit-to-map scores

61 models submitted from 17 groups

Single Summary Paper Planned

Unique Modeled Ligands in PDB EM Structures

Targets

Specimen/Reference	Target Map	EMDB	Symmetry	Reference Model	Model Components	Resol (Å)
<i>E. coli</i> β-Galactosidase (EMPIAR 10061 reprocessed) doi		EMD- 7770	D2	6cvm	Protein (1 unique chain, A,B,C,D), Water, Mg, Na ions,PETG: 2-phenylethyl 1-thio-beta-D- galactopyranoside (PTQ)	1.9
SARS-CoV-2 RNA- dependent RNA polymerase doi		EMD- 30210	P1	7bv2	Protein (3 unique chains A B C), RNA (2 unique chains D E), Water, Zn, Mg ions, pyrophosphate, F86 (remdesivir , covalent inhibitor)	2.5
SARS-CoV-2 ORF3a putative ion channel in nanodisc doi		EMD- 22898	C2	7kjr	Protein (2 unique chains A,B C,D), Water, 1,2- Dioleoyl-sn-glycero-3-phosphoethanolamine (PEE)	2.1

Assessment Methods Presented

- Model-Compare Pipeline (multiple metrics) Andriy Kryshtafovych
- Mogul (wwPDB Validation Report) Chenghua Shao
- NtC nucleic acid geometry, solvation- Bohdan Schneider and Jiri Cerny
- Probescore, Undowser, "eyes" -- Jane Richardson
- Hot spot Chem Environment -- Chris Williams
- Q-scores -- Greg Pintilie
- Ligand Strain Analysis --Ben Sellers

bGal PETG Ligand-Only Q-score

HR.

Best (0.69)

Source: Greg Pintilie

Some of the observations/issues raised...

- Local map resolution may not match overall resolution
- Incomplete occupancy
- Multiple conformations/poses
- Ligand may be flexible/disordered in regions
- Radiation damage
- Difference maps useful for interpretation
- B-factor type parameter needed beyond x,y,z to optimize model-based map

Future Challenges

- Ligands/lons
- Lower Resolution
- Membrane Proteins
- Nucleic Acids
- Models derived from Tomograms

Use Previous Challenge maps/models to test your software: https://zenodo.org/communities/3dcryoemchallenges

EMDataResource Unified Data Resource for 3DEM

Please Join Us!

RNA Structures by Method 2015-2021

HB

η-θ Plots

Data windowing (kernel smoothing or kernel density estimation) was employed using Blackman window function. It transforms the η - θ scatter plot into a density plot.

Wadley LM et al., 2007. J. Mol. Biol. 372, 942-957

η-θ Plot: Riboswitch with tRNA (6POM)

186 C3'-endo RNA residues with 4 outliers (2.15 %) from Eta-Theta plot

32 C2'-endo RNA residues with 3 outliers (9.38 %) from Eta-Theta plot

https://ptp.emdataresource.org

Unified Data Resource for 3DEM

Stanford University

Rutgers University

Wah Chiu (PI) Greg Pintilie Mike Schmid **UC Davis:** Andriy Kryshtafovych Cathy Lawson Helen Berman Brinda Vallat

(Baylor Coll. Med.) Steven Ludtke Matt Baker Corey Hryc Ian Rees John Westbrook Brian Hudson Batsal Devkota Raul Sala Chunxiao Bi

European Bioinformatics Institute

Ardan Patwardhan Gerard Kleywegt Sanja Abbott Zhe Wang Kim Henrick Richard Newman Christoph Best Glen van Ginkel Eduardo Sanz-Garcia Ingvar Lagerstedt

EMDataResource is funded by the US National Institutes of Health/National Institute of General Medical Science, **R01GM079429-12**

