Validation Methods

A blast from the past ...

NYSBC-NCCAT 2022 Single-particle cryo-EM Course

The dark side of single-particle EM

The great thing about single-particle EM: Every dataset and processing approach yields a 3D map !

The <u>bad</u> thing about single-particle EM: Every dataset and processing approach yields a 3D map !

But is it correct ???

Particularly problematic for low-resolution maps

The issue: Structures of the IP3 receptor as determined by single-particle EM

Cells Expression Purification

Potential issues:

Heterogeneity – Compositional – Conformational – Discrete states – Continuous movement

Effect of cross-linking

Potential issues with samples

Before attempting structure determination – Understand and optimize your sample !

Prepare negatively stained specimens: Good contrast and preferred orientations → Easy to assess heterogeneity

If particles look heterogeneous: Calculate class averages → Assess type and degree of heterogeneity → Minimize heterogeneity by any means possible

If chemical fixation was used: Look at unfixed sample to assess effect of cross-linking → Assess whether structure of cross-linked sample is meaningful

Effect of cross-linking: The HOPS tethering complex

Cross-linked

Bröcker *et al.* (2012) *PNAS* <u>109</u>: 1991-1996

Native

Chou *et al.* (2016) *NSMB* <u>23</u>: 761-763

Potential issues:

- No particles
- Preferred orientations

Potential issues with grids

No particles (particles bind to carbon and avoid holes)

- Increase protein concentration
- Double blotting
- Use thin support film (carbon or graphene oxide)
 Use different grids, e.g., PEG-treated or gold grids

Preferred orientation (particles align at air/water interface)

- Lack of views will result in:
- non-isotropic resolution of the density map
- can potentially lead to an incorrect density map

 Use low concentration of detergent (changes surface tension) Use thin carbon film (commonly used for ribosome samples) - Use gold grids

Different sample preparation approach (e.g., Spotiton) Collect images from tilted specimens

Preferred orientations: Pex1/6 complex Without detergent

	Chi Parlorette									ALC: NO.	
126	127	128	() 129	130	()) 151	132	155	134	135	136	137
	55 106	107	108	550 109		S			-	63.	
(j)	E	57 C	,Sh		-	-	3	43	E.	(Å)	15
100		-		4	\$		-43	£3	ŝ.	3.	577
Ø	4	-	5	10 10	1	1997 1997	(S.).	S	4	1	-
(Å)	153	-	45.	() ()	S .	4	-	50 70	30	-	() ()
	Ţ	2	3	555. 4	Sr.		-	3	9		

Preferred orientations: Pex1/6 complex With detergent

Potential issues:

- Low contrast
- Beam damage

Potential issues with images

Poor electron scattering
 → high electron dose

Beam sensitivity \rightarrow low electron dose

→ Poor SNR can be fixed by averaging → Loss of information cannot be fixed

 \rightarrow Electron micrographs recorded with low electron doses \rightarrow Particles hard to see and align, especially small ones

Problem fixed by DDD cameras

 → Collect long movies (movies allow for motion correction/unblurring)
 → Add frames with resolution filter (removes damaged high-resolution information retains low-resolution information for good SNR)

Potential issues:

Particle picking:

- Model/reference bias
- 2D classification:
- Model/reference bias
- Number of classes
- Heterogeneous classes
- Disappearing classes

3D classification has become very powerful
 → 2D classification not as important anymore
 → mostly used for initial quality control and to remove (really) bad particles)

Structure determination by single-particle EM <u>Potential issues with particle picking</u>

1,000 images containing pure white noise Reference: <u>Albert Einstein</u>

Shatsky *et al.* (2009) *J. Struct. Biol.* <u>166</u>: 67-78 Henderson (2013) *Proc. Natl. Acad. Sci. USA* <u>110</u>: 18037-18041

Structure determination by single-particle EM <u>Potential issues with particle picking</u>

Model/reference bias

Average of 1,000 images containing pure white noise after alignment to an image of Albert Einstein

 \rightarrow Einstein from noise

Shatsky *et al.* (2009) *J. Struct. Biol.* <u>166</u>: 67-78 Henderson (2013) *Proc. Natl. Acad. Sci. USA* <u>110</u>: 18037-18041

Structure determination by single-particle EM Potential issues with particle picking

Mao *et al.* (2013) *PNAS* <u>110</u>: 12438-12443

Henderson (2013) *PNAS* <u>110</u>: 18037-18041

Structure determination by single-particle EM <u>Potential issues with particle picking</u>

Mao *et al.* (2013) *PNAS* <u>110</u>: 12438-12443

Using template matching to pick particles from very noisy images is dangerous

- → Averages will end up looking like templates used for particle picking
- → Better to first pick images without templates and use resulting averages as templates for re-picking

Potential issues:

Incorrect map

Because of:

- Heterogeneous sample
- Missing views
- Incorrect solution

Random conical tilt reconstruction

Single particles in ice

Angular reconstitution

van Heel, 1987

- 1. choose 3 projection images that are perpendicular views of the particle (anchor set)
- 2. add in further projections and keep refining

Serysheva et al., 1995

Chicken Slo2.2 in the absence of Na⁺

Class averages Initial model (obtained with VIPER)

Angular refinement

Angular refinement

Potential issues:Reference biasOverfittingResolution assessment

Structure determination by single-particle EM <u>Potential issues with density map</u>

Model/reference bias

Average of 1,000 images containing pure white noise after alignment to an image of Albert Einstein

 \rightarrow Einstein from noise

Shatsky *et al.* (2009) *J. Struct. Biol.* <u>166</u>: 67-78 Henderson (2013) *Proc. Natl. Acad. Sci. USA* <u>110</u>: 18037-18041

Angular refinement

Structure determination by single-particle EM <u>Potential issues with density map</u>

Model/reference bias

Average of 1,000 images containing pure white noise after alignment to an image of Albert Einstein

 \rightarrow Einstein from noise

Over-fitting results in spurious highresolution features due to alignment of noise

Shatsky *et al.* (2009) *J. Struct. Biol.* <u>166</u>: 67-78 Henderson (2013) *Proc. Natl. Acad. Sci. USA* <u>110</u>: 18037-18041

Resolution assessment

Maps have to be independent !

 FSC = 0.5
 Signal = Noise

 Böttcher et al. (1997) Nature <u>386</u>: 88-91

FSC = 0.143 Phase error = 60° Rosenthal & Henderson (2003) *J. Mol. Biol.* <u>333</u>: 721-745

Resolution assessment

Resolution assessment

If the entire dataset is refined together against a reference resolution-filtered to 10 Å

FSC = 0.143 criterion still meaningful as long as FSC shows correlation beyond resolution of reference (10 Å)

Resolution assessment

The 2016 map challenge

December 2018 Special Issue of *J. Struct. Biol.* with contributions regarding the map and model challenges (Lawson & Chiu, Heymann *et al.*)

Current procedure to estimate resolution by FSC is not sufficiently standardized

Several variables (e.g., map box size, voxel size, filtering and masking practice and threshold value for interpretation) can substantially impact the determined resolution

Archives could independently estimate the resolution of maps by FSC from deposited unmasked, minimally filtered half-maps

Still does not take into account local resolution differences !

Local resolution

Local resolution

Local resolution

Local resolution

Local resolution

Local resolution

Resolution assessment

What should be resolved ?

> 20 Å protein envelope

~ 9-10 Å α -helices

< 4.8 Å β -sheets

~ 4 Å bulky side chains

Rosenthal & Rubinstein (2015) Curr. Opin. Struct. Biol. 34: 135-144

The issue: Structures of the IP3 receptor as determined by single-particle EM

Meeting of experts in 2010 to come up with standards for map validation

Outcome summarized in 2012:

Outcome of the First Electron Microscopy Validation Task Force Meeting

Richard Henderson,¹ Andrej Sali,² Matthew L. Baker,³ Bridget Carragher,⁴ Batsal Devkota,⁵ Kenneth H. Downing,⁶ Edward H. Egelman,⁷ Zukang Feng,⁵ Joachim Frank,^{8,9} Nikolaus Grigorieff,¹⁰ Wen Jiang,¹¹ Steven J. Ludtke,³ Ohad Medalia,^{12,21} Pawel A. Penczek,¹³ Peter B. Rosenthal,¹⁴ Michael G. Rossmann,¹⁵ Michael F. Schmid,³ Gunnar F. Schröder,¹⁶ Alasdair C. Steven,¹⁷ David L. Stokes,¹⁸ John D. Westbrook,⁵ Willy Wriggers,¹⁹ Huanwang Yang,⁵ Jasmine Young,⁵ Helen M. Berman,⁵ Wah Chiu,³ Gerard J. Kleywegt,²⁰ and Catherine L. Lawson^{5,*}

Henderson et al. (2012) Structure 20: 205-214

- Compare reference-free averages with projections

Henderson et al. (2012) Structure 20: 205-214

Map validation <u>Re-projections and angular distribution</u>

- Compare reference-free averages with projections
 - only checks consistency of 3D map with 2D data
 - also check angle distribution
- Tilt-pair analysis

Henderson et al. (2012) Structure 20: 205-214

Map validation <u>Tilt-pair analysis</u>

Map validation <u>Tilt-pair analysis</u>

Tilt-pair parameter plot Tilt-pair phase residual plot 45° - 45° 0° 15° 30° -30° - 15° TILTDIRECTION 90 degrees 45° 30° * ** * 15° * 7 TILTDIRECTION 0° 180 degrees 0 degrees * - 15° D TILTANGLE=30. - 30° TILTANGLE=40. 00 45° ► X 270 degrees

Rosenthal & Rubinstein (2015) Curr. Opin. Struct. Biol. 34: 135-144

Map validation <u>Tilt-pair analysis</u>

Henderson et al. (2011) J. Mol. Biol. 413: 1028-1046

		Particle size	Molecular mass	Number of	Number of	Successful	Angular error (°)	
Specimen	Symmetry	(Å)	(MDa)	tilt pairs	particles	alignment (%)	Mean	Maximum
Rotavirus DLP	<i>I</i> 2	700	50	10	95	100/100	0.25	1.0
CAV	I2	255	2.7	1	45	62/82	2.5	3.5
70S ribosomes	C1	270×260	2.6	12	220	45/75	4.0	5.0
FAS	D3	260×220	2.6	2	44	59/95	4.0	6.0
PDH-E2CD	<i>I</i> 1	280	1.6	1	50	62/94	3.0	4.0
Thermus V-ATPase	C1	250×140	0.6	1	50	54/80	10.0	16.0
Bovine F-ATPase	C1	250×140	0.6	1	29	52/79	20.0	25.0
DNA-PKcs	C1	150×120	0.47	14	108	44/81	15.0	17.0
β-Galactosidase	D2	$180\!\times\!130\!\times\!95$	0.45	2	119	74/91	10.0	14.0

Table 1. Overview of tilt-pair statistics

- determines whether overall 3D map is correct at 15-20 Å resolution (but not high-resolution features)
- allows determination of handedness
- can be used to refine parameters used for orientation determination \rightarrow can thus be used to improve the map
- validates orientation parameters (but not microscope parameters, i.e., defocus, magnification)

"If less than 60% of particles show a single cluster, the basis for poor orientation parameters should be investigated"

Map validation <u>Tilt-pair web server</u>

Input

Output

Parameters:

-10

-20

Magnification	4.98 (effective: 9.96) A/px				
Defocus	58626 ; 59084				
Astigmatism	55.7				
Voltage	300 kV				
Resolution Range	100.0 - 30.0 A				
Tilt Range	30				
Particle radius	20 (effective: 10) px				
Optimized box size (after binning)	46				
Effective binning:	2				

Summary of the results for all submitted particles:

Minimal Phase Residual: 52.53°
Minimum at the position: 2.0°, 10.0°
Tilt axis (angle with respect to the X axis): 78.7°
Tilt angle: 10.2°
Hand Phase Difference: 12.48°
Average distance to the global minimum: 5.24°
Particles in the cluster $(0.5\sigma - 6.13^{\circ})$ near the minimum average phase residual:
1 2 4 5 7 8 9 10 13 14 16 17 18 20 21 22 25 26 27 28 29 30 31 34 35 43 44 46 47 48 49
Particles outside the cluster:
3 6 11 12 15 19 23 24 32 33 36 37 38 39 40 41 42 45
50

Wasilewski & Rosenthal (2014) J. Struct. Biol. 186: 122-131

http://www.ebi.ac.uk/pdbe/emdb/validation/tiltpair/

+ 🚱 www.ebi.ac.uk/pdbe/emdł	/validation/tiltpair/						
il Email BiogenMail Gmail Co	antway Lab Bouncing Balls Ballies	Commons NIH RePORTER MemProtS	tructure PRIVAT - SCIENCE -	nomegate NIH-Forms Apple .N	fac Amazon eBay Yahoo! News ▼ Apple ▼		
	This website uses cookies. B	continuing to browse this site, you are agre	eing to the use of our site cookies. To fin	d out more, see our Terms of Use.			
					9		
EMBL-EBI					Services Research Training About us		
Brotain Dat	a Rank						
Protein Dat	a Dalik	EM	resources				
Bringing Structure to Biology							
	Share 10 Feedback						
EM Resources	Tilt pair validation server						
	Welcome to the DDBs tilt sais valids	ion contact					
 Statistics 	Tilt-pair validation analysis (Rosenth	al and Henderson, 2003) can be use	d to assess the accuracy of initial a	angle assignment in single-particle	e processing. To perform this analysis you		
Validation EMDataBank	need to collect two corresponding s images. This server is based on the	ets of particle images - one untilted Tilt-pair server developed at MRC Nati	and the other tilted, then upload t onal Institute for Medical Research	he stacks of images along with a (Wasilewski and Rosenthal, 2014)	3D reconstruction based on the untilted		
• EMPIAR	Peter Rosenthal for their help in dev	eloping and testing the current server.					
 Test data 	can use to try out the service here.	We are still developing the server and	itaining Euler angles for individual p appreciate your <u>feedback</u> !	particles) in Spider or Frealign form	hat, we have some test data sets that you		
EMDB	Man (3D volume):	Channe File and file selected	0				
 Latest maps Latest headers 	Untilted stack:	Choose File no file selected	õ				
 Latest updates 	Orientation parameters for stack 1:	Choose File no file selected	Frealign 💠 🔞				
Search Browco	Tilted stack:	Choose File no file selected	0				
 FTP archive 	Pixel size (Å):						
 Deposit EM map/model 	Mask radius (pixels):	: 0					
 EMDB data model 	Tilt search range (degrees):	20 🕃 🧐					
	Resolution range (low to high; A):	100 🔋	20				
	Indu name:						
	Perform CTF correction?	0					
	Compute						
88PDBe is a me	mber of CPDB	DataBank					
88PDBe is a me	mber of CPDB	DataBank in hear o Hear					
SPDBe is a me	mber of TPDB 🔮 🖽	DataBank	Training	Industry	About us		
SPDBe is a me EMBL-EBI	mber of PDB ® M	DataBank Research Overview	Training	Industry	About us		
SPDBe is a me	mber of OPDB DE MARK	DataBank Research Overview Publications	Training Overview Train at EBI	Industry Overview Members Area	About us Overview Leadership		

- Compare reference-free averages with projections
 - only checks consistency of 3D map with 2D data
 - also check angle distribution
- Tilt-pair analysis
 - excellent, also establishes handedness
- "Gold standard" FSC
 - not necessarily needed (but now pretty much default)
- Randomize phases

Henderson et al. (2012) Structure 20: 205-214

Map validation Randomize phases

Rosenthal & Rubinstein (2015) *Curr. Opin. Struct. Biol.* <u>34</u>: 135-144 Chen *et al.* (2013) *Ultramicroscopy* <u>135</u>: 24-35

- Do single-particle reconstruction / refinement
- Determine resolution (FSC)
- Take raw data, randomize phases beyond which $FSC_{\rm T}$ falls below a threshold (75 or 80%)
- Redo the same analysis and recalculate FSC curve
- Any signal in region of randomized phases indicates issues
 with noise alignment in that region
- Can be implemented in any package

Map validation Randomize phases

Rosenthal & Rubinstein (2015) *Curr. Opin. Struct. Biol.* <u>34</u>: 135-144 Chen *et al.* (2013) *Ultramicroscopy* <u>135</u>: 24-35

FSC signal due to over-fitting (noise)

FSC signal due to true structural information

- Compare reference-free averages with projections
 - only checks consistency of 3D map with 2D data
 - also check angle distribution
- Tilt-pair analysis
 - excellent, also establishes handedness
- "Gold standard" FSC
 - not necessarily needed (but now pretty much default)
- Randomize phases
 - excellent (implemented in software packages)
- Appearance of expected secondary structure elements

Map validation Expected secondary structure

Samso et al. (2009) PLoS Biol. 7: e1000085

- Compare reference-free averages with projections
 - only checks consistency of 3D map with 2D data
 - also check angle distribution
- Tilt-pair analysis
 - excellent, also establishes handedness
- "Gold standard" FSC
 - not necessarily needed (but now pretty much default)
- Randomize phases
 - excellent (implemented in software packages)
- Appearance of expected secondary structure elements
- Evaluate with published information

Henderson *et al.* (2012) *Structure* <u>20</u>: 205-214

Evaluation with published information

- Compare reference-free averages with projections
 - only checks consistency of 3D map with 2D data
 - also check angle distribution
- Tilt-pair analysis
 - excellent, also establishes handedness
- "Gold standard" FSC
 - not necessarily needed (but now pretty much default)
- Randomize phases
 - excellent (implemented in software packages)
- Appearance of expected secondary structure elements
- Evaluate with published information pull-down experiments
- yeast two-hybrid analysis
 - cross-link mass spectrometry
- Dock known atomic structures into map

Henderson et al. (2012) Structure 20: 205-214

Map validation Docking of atomic models

Map validation Docking of atomic models

Biol. Chem. <u>387</u>: 179-187

JMB <u>344</u>: 435-442

Map validation Docking of atomic models

Biol. Chem. <u>387</u>: 179-187

Nakegawa (2019) *Science* <u>366</u>: 1259-1263

Map validation – IP3 receptor Different maps of the IP3 receptor

Map validation – IP3 receptor New density map in 2011 at 11 Å resolution

Ludtke et al. (2011) Structure 19: 1192-1199

Map validation – IP3 receptor Expected secondary structure elements

Ludtke et al. (2011) Structure 19: 1192-1199

Map validation – IP3 receptor <u>Comparison of reference-free averages with projections</u>

Α	в	С	D
*	*	*	
۳	*		
*	*	30-	
÷		ø	
*		-Je	
٣	*	Ëð	
٠	-	3	

- A: Map projection
- B: Reference-based class average
- C: Reference-free class average
- D: Selected particles

Murray et al. (2013) Structure 21: 900-909

Map validation – IP3 receptor <u>Tilt pair test</u>

Murray et al. (2013) Structure 21: 900-909

Map validation – IP3 receptor <u>Comparison of maps from different programs</u>

Map validation – IP3 receptor <u>4.7 Å resolution structure (2015)</u>

Fan et al. (2015) Nature 527: 336-341

Map validation – IP3 receptor 3.5 Å resolution structure (2018)

Paknejad & Hite (2018) Nat. Struct. Mol. Biol. 25: 660-668

Map validation – the 2016 map challenge

Develop benchmark datasets, encourage development of best practices, evolve criteria for evaluation and validation, compare and contrast different approaches

target	1. GroEL in silico	2. T20S Proteasome	3. Apo- Ferritin	4. TRPV1 Channel	5. 80S Ribosome	6. Brome Mosaic Virus	7. β- Galactosidase
Reference EMDB map entry		EMD-6287	EMD-2788	EMD-5778	EMD-2660	EMD-6000	EMD-5995
Primary Citation	Vulovic et	Campbell et	Russo &	Liao et al	Wong et al	Wang et al	Bartesaghi
Reported Resolution (Å)	~3	2.8	4.7	3.3	3.2	3.8	3.2

7 datasets: rigid particles that should be easy to reconstruct

Input are raw cryo-EM data (from EMPIAR)

 \rightarrow 27 members of the community submitted 66 maps

Assessors devised a range of analyses to evaluate the submitted maps, including visual impressions, Fourier shell correlation, pairwise similarity, and interpretation through modeling

December 2018 Special Issue of *J. Struct. Biol.* with contributions regarding the map and model challenges (Lawson & Chiu, Heymann *et al.*)

Map validation – the 2016 map challenge

Develop benchmark datasets, encourage development of best practices, evolve criteria for evaluation and validation, compare and contrast different approaches

Map validation – the 2016 map challenge

Develop benchmark datasets, encourage development of best practices, evolve criteria for evaluation and validation, compare and contrast different approaches

Assessors found no strong trends.

No strong relationship between map quality and used software package or workflow.

The user's choices determine the map quality.

Future focus should be on promulgating best practices

processing of independent sets proper resolution-limited alignment, appropriate masking and map sharpening

and encapsulating these in the software.

Note that the maps had different qualities/resolutions, BUT NONE WAS COMPLETELY WRONG !