

New York Structural Biology Center

SIMONS ELECTRON
MICROSCOPY CENTER

WEEK 2 JUNE 6/16-17

Core knowledge

Sample preparation

Microscope operations & Data collection

Processing & Data analysis

SCHEDULE

- I. Sample purification and grid preparation
 - a) cryoEM merit badges
- b) Chameleon demo overview of blot free vitrification vs plunge freezing methods
- II. Grid screening & evaluation
 - a) Sample holders
 - -Side entry systems: Gatan 626/Elsa holder and loading
 - -Autoloader systems: autogrid clipping and loading
 - b) F20 setup and demo of screening with Leginon
- III. Cryo-EM data collection
- a) Glacios setup and advanced sample screening/preliminary data collection with Leginon
 - b) Krios high res data collection with Leginon
- IV. Image (pre)-processing
 - a) On the fly feedback cryoSPARC live
 - b) Working with your own data

NCCAT CROSS-TRAINING RESOURCES

Supplemental cryoEM masterclass materials for cohort3

- Intro to sample preparation negative stain and screening on an F20
- Negative stain and F20 Manuals and Checklists:
- · Solarus plasma cleaner manual
- Negative-stain manual
- Negative-Stain Independence Checklist
- o TF20 user manual
- T12-F20 Checklist

CRYOEM MERIT BADGES

- · Sample preparation merit badges are valid for ~1yr.
- Recertification (to maintain active status) requires passing the practical test with one
 center staff member. If supervised training is needed to pass the practical test, this can be
 arranged.

Figure 1. Vitrobot assembled and turned on. A) Screen.
B) Environmental chamber with blotting pads.
C) Humidifier. D) ethane lift.

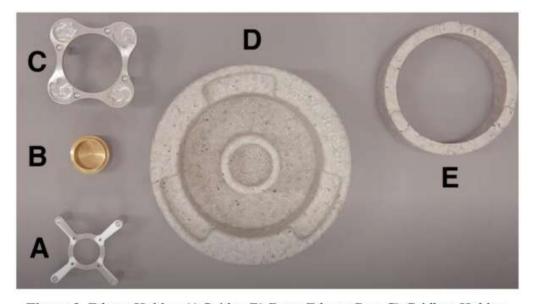
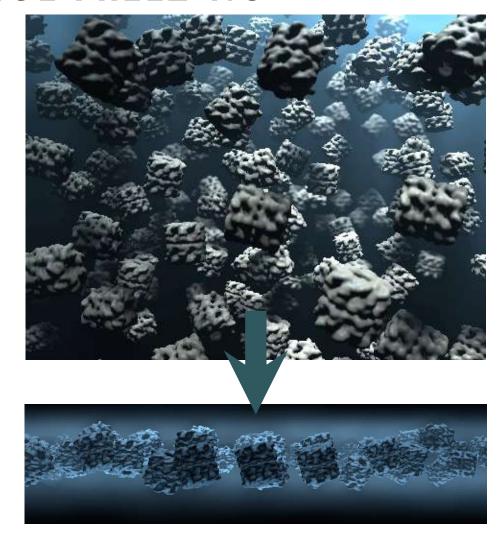


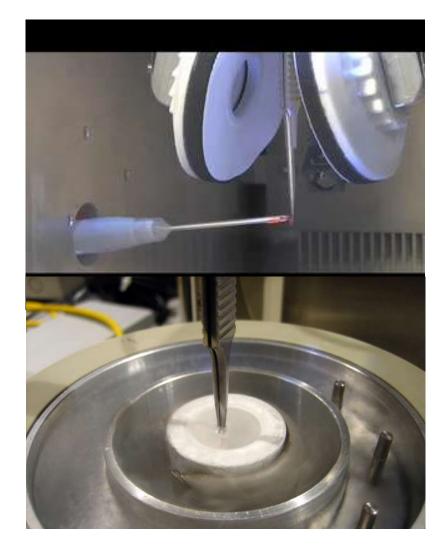


Figure 2. Ethane Holder. A) Spider. B) Brass Ethane Cup. C) Gridbox Holder. D) Base / Liquid Nitrogen Container. E) Anti-contamination Ring.

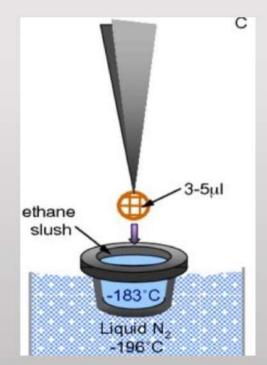

CRYOEM MERIT BADGES

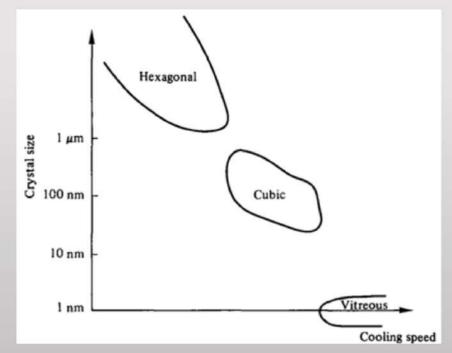
https://cryoem101.org/selftest/?test=19



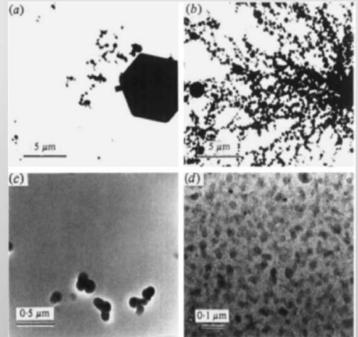

Begin Quiz: Merit Badge Knowledge Quiz - TFS Vitrobot Mark IV

PLUNGE FREEZING

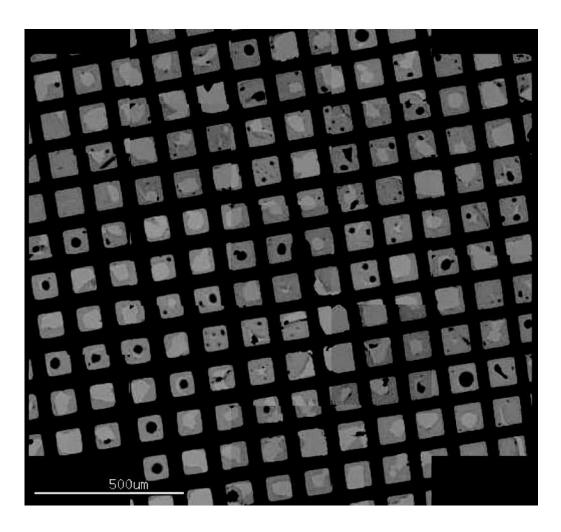


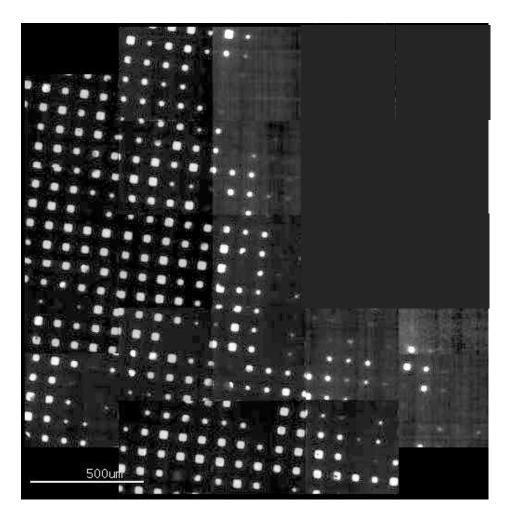


PLUNGE FREEZING

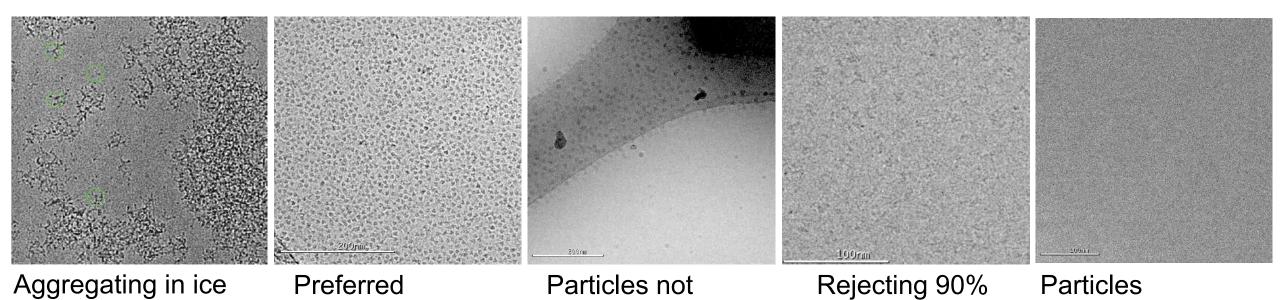

- Liquid ethane is a suitable coolant.
- Liquid nitrogen boils on contact, which makes it a poor coolant for cryo-EM.
- Cooling speed faster than 10⁵-10⁶ K/s ensure the formation of vitrified ice.


Setup of liquid ethane (Image from Wen Jiang)


Cooling speed & forms of ice



Different forms of ice contamination


WHAT DO GRIDS LOOK LIKE?

WHAT ISSUES ARISE?

orientation

going into holes

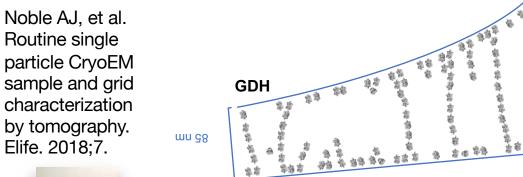
of particles

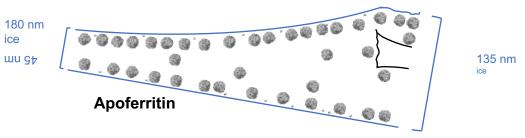
disappearing in ice

WHAT ISSUES ARISE?

110 nm աս գլ ice **Aldolase**

45 nm ice


Hemagglutinin


50 nm ice

Hemagglutinin

Aldolase

ice

Elife. 2018;7.

Alex Noble

ლი შნ **T20S Proteasome**

110 nm

REAGENTS FOR IMPROVING VITRIFICATION OF CRYO-EM GRIDS USED IN SINGLE PARTICLE ANALYSIS.

Surfactants and Cryoprotectants	Amount	Conc.	СМС	Class
Fluorinated Octyl Maltoside (FOM)	100 μl	0.41% (w/v)	0.07% (w/v)	non-ionic detergent
Hexadecyl-trimethyl-ammonium Bromide (CTAB)	100 μl	0.34% (w/v)	0.03% (w/v)	cationic detergent
n-Decyl-ß-D-Maltoside (DM)	100 μl	0.87% (w/v)	0.09% (w/v)	non-ionic detergent
n-Decyl-α-D-Maltoside (DαM)	100 μl	0.46% (w/v)	0.08% (w/v)	non-ionic detergent
n-Dodecyl-ß-D-Maltoside (DDM)	100 μl	0.09% (w/v)	0.01% (w/v)	non-ionic detergent
Sodium Deoxycholate	100 μl	1.66% (w/v)	0.17% (w/v)	anionic detergent
Triton X-100	100 μl	0.15% (w/v)	0.01% (w/v)	non-ionic detergent
Tween 20	100 μl	1% (w/v)	0.01% (w/v)	non-ionic detergent
CHAPSO	100 μl	2.5% (w/v)	0.5% (w/v)	zwitterionic detergent
Amphipol A8-35	100 μl	5% (w/v)		anionic surfactant
Glycerol	1 ml	30% (w/v)		cryoprotectant

[1] Noble et al. (2018) Routine Single Particle CryoEM Sample and Grid Characterization by Tomography. DOI: 10.7554/eLife.34257.

[2] Thonghin et al. (2018) Cryo-electron microscopy of membrane proteins. Methods 147:176.

[3] Drulyte et al. (2018) Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Cryst. D 74:560.

[4] Glaeser et al. (2017) Opinion: hazards faced by macromolecules when confined to thin aqueous films. Biophys Rep 3:1.
[5] Gatsogiannis et al. (2016). Membrane insertion of a Tc toxin in near-atomic

detail. Nat. Struct. Mol. Biol. 23:884.

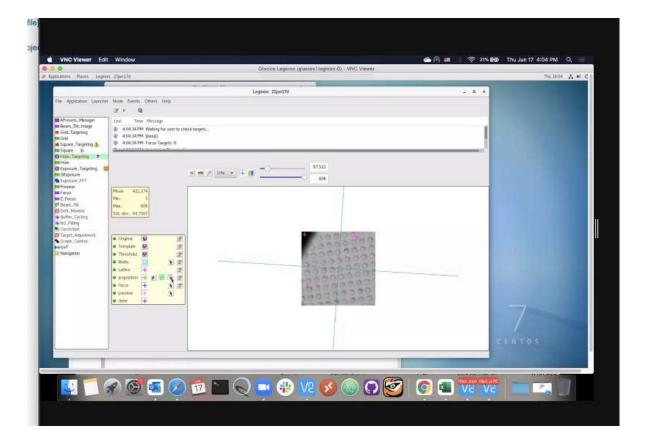
[6] Efremov et al. (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:39.

https://www.mitegen.com/product/cryo-em-vitrification-starter-kit/

REAGENTS FOR IMPROVING VITRIFICATION OF CRYO-EM GRIDS USED IN SINGLE PARTICLE ANALYSIS.

PDB Release Date	PDB	Protein	Additive	
2020-01-08	6PWN	MscS mechanosensitive channel	0.01% f-OM	
2019-09-04	6KG7	Piezo2 mechanosensitive channel	0.65 mM f-FC8	
2019-08-28	6QTI	Nicotinamide nucleotide proton channel	0.05% CHAPS	
2019-08-07	6R7L	SecYEG translocon	0.2% f-OM	
2019-02-06	6E0H	TMEM16 scramblase	3 mM f-FC8	
2018-12-19	6N3Q	Sec protein-translocation channel complex	3 mM f-FC8	
2018-11-07	6H3I	Type 9 secretion system translocon	1.5 mM f-FC8 or 0.7 mM f-OM	
2018-10-24	6DMR	TRPV5 ion channel	3 mM f-FC8	
2018-10-17	6D3R	CFTR	3 mM f-FC8	
2018-09-26	6HJR	Influenza Hemagglutinin	2% Octyl Glucoside	
2018-08-08	6FOO	Ryanodine receptor 1	0.2% f-OM	
2018-08-01	6CJQ	SthK CNG Potassium channel	3 mM f-FC8	
2018-05-23	5YX9	TRPC6 ion channel	0.5 mM f-OM	
2018-01-31	6C0V	P-Glycoprotein transporter ABCB1	3 mM f-FC8	
2017-12-27	6B5V	TRPV5 ion channel	3 mM f-FC8	
2017-12-13	6BPQ	TRPM8 channel	2% DMSO	

Glaeser, RM, et al. (2017) Biophys Rep 3(1), 1-7.


Noble, AJ, et al. (2018) Nat Methods 15(10), 793-795.

Drulyte, I et al. (2018) Acta Crystallogr D Struct Biol 74(Pt 6), 560-571.

Chen, J, et al. (2019) J Struct Biol X Volume 1. DOI: 10.1016/j.yjsbx.2019.100005

https://www.anatrace.com/Landing/2020/Mar20-Newsletter

DIFFICULT SPECIMENS

Small protein

- VPP
- Thinner ice

Protein denaturation/Dissociation of protein complex

Continuous carbon film

Graphene oxide

Cross-linking (GraFix)

Preferred orientation

Tilt stage

Cross-linking

Detergent

Glow-discharging conditions

Support film (Graphene oxide)

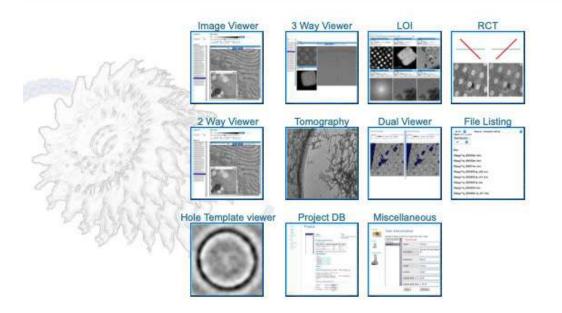
Image analysis (3D classification)

Flexibility

Focused classification (subtraction)

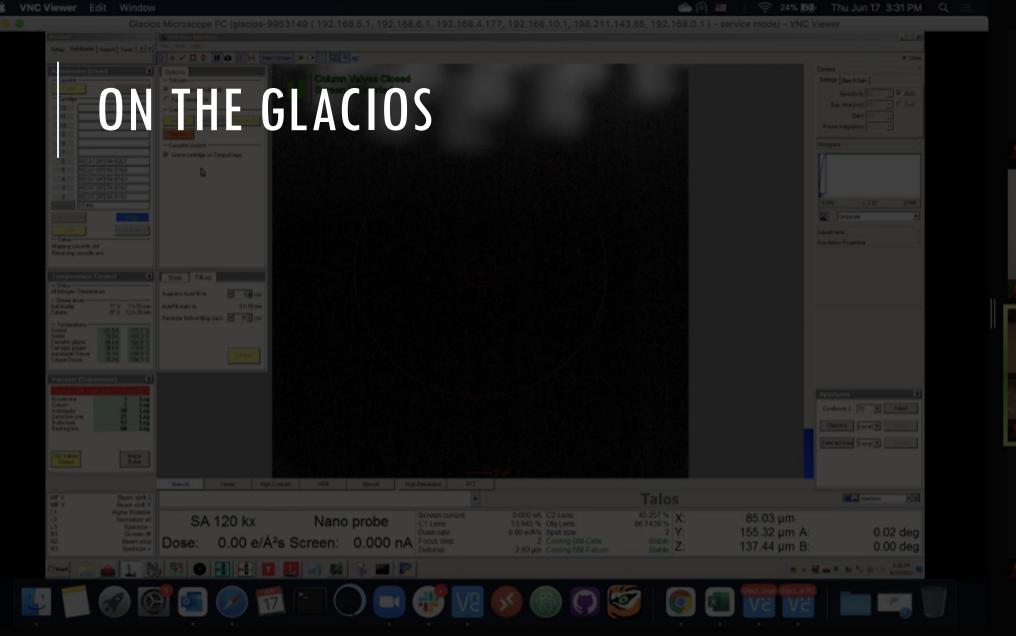
Multibody refinement

Filamentous protein


Segmented analysis

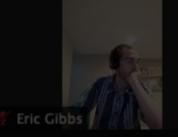
VI. Low concentration

Multiple blots


Affinity grids

EMGWEB.NYSBC.ORG Appion and Leginon Tools

EMGWEB.NYSBC.ORG


ninfo / nccat032020

WEEK 1 JUNE 6/09-10

WEEK 2 JUNE 6/16-17

WEEK 3
WK OF JUNE 21+

Practical: High end data collection

Data collection on Krios

Leginon automation

Pre-processing / cryoSPARC LIVE