

Stefan Petrovic California Institute of Technology Linker proteins tie the Nuclear Pore together

Linker proteins tie the Nuclear Pore Complex (NPC) together

Cry Stefan Petrovic Hoelz lab, Caltech April 12th-14th, 2021

Acknowledgements

- Caltech Center for Molecular and Cellular Medicine
- Caltech Molecular Observatory
 - Jens Kaiser
- Caltech Cryo-EM Facility Beckman Institute
- PNCC Cryo-EM Center
- NYSBC-NCCAT Cryo-EM Center
- André Hoelz group
 - Dipanjan Samanta (postdoc)
 - Thibaud Perriches (postdoc)
 - Karsten Thierbach (postdoc)
 - Chris Bley (lab manager)
 - Bonnie Brown (research tech)
 - Taylor Stevens (grad student)
 - Xiaoyu Liu (postdoc)
 - Giovani Tomaleri (rotation)
 - Lucas Schaus (rotation)
 - Jimmy Thai (Amgen scholar)
 - Alex Lyons (Amgen scholar)
 - Aaron Tang (research tech)

Thesis committee

- Doug Rees (chair)
- Bil Clemons
- Grant Jensen
- André Hoelz (advisor)

Daniel Mann Forschungszentrum Juelich Macromolecular organization of membraneassociated Atg18 oligomers

Macromolecular organization of membrane-associated Atg18 oligomers

DANIEL MANN

FORSCHUNGSZENTRUM JÜLICH

CARSTEN SACHSE LA

NCCAT TOMO SHORTCOURSE

Mitglied der Helmholtz-Gemeinschaft

ATG18

A KEY PLAYER IN MACROAUTOPHAGY

- Autophagy
 - Intracellular degradation process (recycling and removal of material)
 - Encapsulation, delivery to lysosome
- Atg18: formation and elongation of phagophore
- Atg18 binds PI3P and PI(3,5)P₂
- Atg18 assembles into helical tubes

ATG18 on cellular membranes

• PySeg package / Relion for subtomo averaging

Double membrane binding of a ~50 kDa protein

Martinez-Sanchez et al. Nat. Meth. 2020

Ernst Ruska Centre 3 @ Forschungszentrum Jülich

d.mann@fz-juelich.de

www.sachse.fz-juelich.de

www.fz-juelich.de/er-c/er-c-3

https://erc-3-cloud.fz-juelich.de/FSC_Server/

Giulia Paris University of Cambridge Structural studies of the membrane-bound RNA degradosome of E.coli

Structural studies of the membrane-bound RNA degradosome of *E.coli*

Bandrya et al., Biochim Biophys Acta, 2013;

RNA degradosome:

- Multi-enzyme complex involved in mRNA turnover and gene expression regulation
- Bound to the inner membrane of *E.coli*
- Flexible and natively unstructured scaffold domain

Structural studies of the membrane-bound RNA degradosome of *E.coli*

- Reconstitution of the complex on membranes
- Cryo-electron tomography
- Measure of the 1D-Radial Density Profile (1D-RDP)

Tom Dendooven

Dendooven, Paris et al., in preparation

Structural studies of the membrane-bound RNA degradosome of *E.coli*

Interaction with ribosomes: cryo-electron tomography and subtomogram averaging

Nadia Herrera University of California, San Francisco Investigation of the ultrastructural dynamics of the mycobacterial ESX-1 complex

Investigating the ultrastructure of mycobacterial ESX-1 secretion systems

Nadia Herrera, PhD

NCCAT Tomography Short Course April 12-14, 2021

Adapted from: Poweleit, N., *et al.*, 2019, *eLife*. DOI: 10.7554/eLife.52983

ESX-1 foci in *M. smegmatis* correlate to a large oligomer

Shannon Kordus Vanderbilt University Medical Center Understanding toxin secretion in Clostridioides difficile

How does a large protein get through the cell wall?

The *Clostridiodes difficile* toxins do not require a secretion tag or cell lysis for secretion

Cryo-ET gives insights into the structure of the *C. difficile* cell wall during toxin secretion

Emily Armbruster CUNY Advanced Science Research Center Interactions and Structure of Ryanodine Receptor Clustering on the Sarcoplasmic Reticulum of Cardiac Muscle

Interactions and Structure of Ryanodine Receptor (RyR) Clustering on the Sarcoplasmic Reticulum of Cardiac Muscle

Emily Armbruster, PhD Postdoc, des George Lab

April 13, 2021

RyR cluster size as well the RyR2 arrangement are dynamic, modulated, and correlated to calcium leaks and heart failure

Figure from Katz AM. Physiology of the Heart. 3rd ed. 2001

- Calcium binding one RyR channel can induce multiple RyR channels to open causing calcium spike
- Calcium spike induces muscle contraction
- Clustering of RyRs on membrane impact calcium spike
- Clustering can be modulated by phosphorylation, small molecules, and small accessory proteins

Heart failure correlation

Control heart

Heart that has failed

Kolstad et al. 2018

Modulation by phosphorylation

Control heart slice

Ashgari et al. 2020

Preliminary data of the cardiac SR observed by cryo-ET

Angela Kirykowicz University of Cambridge Structure and function of the Type I secretion system transport machine in its cellular context

Diversity of quaternary structures in response to What Determines Substrate Specificity?

Virulence factor secretion

Mulelu, AE, **Kirykowicz, AM**, Woodward, JM. 2019. Cryo-EM and directed evolution reveal how Arabidopsis nitrilase specificity is influenced by its quaternary structure. Commun Biol. 2: 260.

Enzyme substrates

Kirykowicz, AM & Woodward, JM. 2020. Shotgun EM of Mycobacterial protein complexes during stationary phase stress. Curr Res Struct Biol. Under Peer Review.

Glycerol Cushion

Purification & single-particle cryo-EM

Towards 3D visualization of virus assembly in the cell

Adenovirus (Russell WC, 2009. J Gen Virol 90:1-20).

Structure of purified viral particles

Marabini et al. 2021 Sci Adv. 7(14)

Assembly mechanism

Condezo and San Martín. 2017 PLoS Pathog 27

Gabriela Condezo Spanish National Biotechnology Centre

Adenovirus Assembly

Condezo and San Martín. 2017 PLoS Pathog 27

TsV-N1 Assembly

Kelli Hvorecny University of Washington Divergent Actin and a Lamellipodium-Like Structure in Giardia

The Actin Cytoskeleton of Giardia lamblia

Kelli L Hvorecny

Kollman & Paredez Groups

4 µm

CDC/Dr. Stan Erlandsen

Many thanks!

Justin Kollman Joel Quispe Eric Lynch John Calise Anika Burrell Jesse Hansen Andy Cai Kenzee Hargett

Rachel Klevit Harry Higgs David Kovar

<u>Funding</u> University of Washington UW Office of Postdoctoral Affairs NIH NIAID AI145111

Alex Paredez Bill Hardin Elizabeth Thomas Han-Wei Shih Melissa Steele-Ogus Germain Alas

> Josh Vaughan Aaron Halpern

> Nate Sniadecki Nikita Taparia

Pavla Tumova

Nadav Elad Weizmann Institute Structure of SARS-CoV-2 RBD baring contagious mutation in complex with ACE2

Structure of SARS-CoV-2 RBD baring contagious mutation in complex with ACE2

Nadav Elad

Electron Microscopy Unit Weizmann Institute

In vitro evolution of SARS-CoV-2 RBD

Jiří Zahradník, ..., Orly Dym, Nadav Elad, Gideon Schreiber. SARS-CoV-2 RBD *in vitro* evolution follows contagious mutation spread, yet generates an able infection inhibitor. <u>https://www.biorxiv.org/content/10.1101/2021.01.06.425392v3</u>

Structure of mutated SARS-CoV-2 RBD – ACE2

Jiří Zahradník, ..., Orly Dym, Nadav Elad, Gideon Schreiber. SARS-CoV-2 RBD *in vitro* evolution follows contagious mutation spread, yet generates an able infection inhibitor. <u>https://www.biorxiv.org/content/10.1101/2021.01.06.425392v3</u>

Mark Kreutzberger University of Virginia Visualizing compressional distortions of the supercoiled bacterial flagellar filament in a thin layer of ice Visualizing compressional distortions of the supercoiled bacterial flagellar filament in a thin layer of ice

Mark Kreutzberger Egelman Lab University of Virginia

Hong Zhan University of Wisconsin-Madison Deciphering the nano-machinery of RNA viral replication using Cryo-EM subtomogram averaging

Deciphering the Nano-machinery of RNA Viral Replication Using Cryo-EM Subtomogram Averaging

Site-Specific Labeling of FHV Protein A C-Terminus

FHV genome

FHV protein A C-terminus fused with GFP-11 tag

FHV protein A C-ter is accessible to the cytoplasm

Unchwaniwala, Zhan et al. PNAS 2020

10

15

FHV protein A C-terminus fused with His tag for EM labeling

FHV protein A C-terminus tag insertion does not impair replication process

Unchwaniwala, Zhan et al. PNAS 2020

FHV Protein A C-Terminus is located at Crown Apex

Unchwaniwala, Zhan et al. PNAS 2020

Madhumati Sevvana Purdue University Towards high resolution structural virology for therapeutics development

Atomic resolution structural virology for therapeutics development

Zika virus + Fab

Madhu Sevvana

13th April 2021 NCCAT Tomography Course

PURDUE UNIVERSIT N LAB KUF

Study antibody mediated neutralization of viruses for structure-based therapeutics and vaccine development

Why cryo-ET?

- Asymmetric complexes of icosahedral viruses and Abs
- 3D structure of pleomorphic viruses in complex with Abs

Jae Yang University of Wisconsin-Madison Studying in-situ viral infection with multi-modal cryogenic correlative FLM-FIB/SEM-ET and CorRelator

Exploring *in-situ* viral infection with cryogenic correlative FLM-FIB/SEM-ET and CorRelator

Jae Yang

Wright Laboratory & Midwest Center for Cryo-Electron Tomography (MCCET),

Department of Biochemistry, University of Wisconsin-Madison

CorRelator supports:

- Cross-platform & system-independent correlations
- Accurate and flexible on-the-fly (with SerialEM) and post-acquisition correlation
- Combination of algorithmic and human interactive registration
- Intuitive, and user-friendly application
- Free and source code available at https://github.com/wright-cemrcprojects/corr.

J Struct Biol, 2021, Yang J. & Larson M., et al. https://github.com/wright-cemrc-projects/corr.

Multi-modal correlative approaches to study respiratory syncytial virus infection in HeLa cells

HeLa cells infected by respiratory syncytial virus (red fluorescent signal), live-cell labeling of mitochondria and or microtubules (green fluorescent signal)

Cryo-ET of regions of interest (ROIs) in infected cells

Mitochondria (green) in infected (X) and uninfected, healthy. (X) HeLa cells

Tomogram slice (thickness of 30 nm) of ROIs in uninfected, healthy HeLa cells, Scale bar = 200 nm

Sagar Khavnekar Max Planck Institute of Biochemistry Algorithms, TEMs, and DualBeams... Making the most out of time left after coffee, beer, and whisky.

