

NCCAT Tomography Short Course 2021

Introduction to Cryo-electron Tomography

Wei Dai

Department of Cell Biology and Neuroscience

Institute for Quantitative Biomedicine

Rutgers University

April 12, 2021

The New York Times

Resolving Structures to Drive Scientific Discoveries during the Pandemic

The Coronavirus Unveiled

By Carl Zimmer, Oct. 9, 2020

How does SARS-CoV-2 enter human cells? Wrapp D. *et al.*, Science 2020; Simulation by Amaro lab, UCSD

Cryo-EM Single Particle Analysis

The Nobel Prize in Chemistry 2017

Elmehed

Joachim Frank

Prize share: 1/3

© Nobel Media. III. N. Elmehed Jacques Dubochet Prize share: 1/3 © Nobel Media. III. N. Elmehed Richard Henderson Prize share: 1/3

O Using thousands of **J** similar traces, the computer generates a high-resolution 2D image The computer 4 calculates how the different 2D images relate to each other and generates a high-resolution structure in 3D.

Cryo-electron Tomography

On a TEM: 3D structures \rightarrow 2D images

On a computer: 2D images \rightarrow 3D structures

Baumeister W. 1999 Trends in Cell Bio.

Single Particle *or* Tomography

https://clipart-library.com

10

Transcription-translation Coupling

- In eukaryotes, transcription and translation are separated.
- In prokaryotes, transcription and translation are coupled

11

Transcription-translation Coupling

© 2017 Pearson Education, Inc

Structures of Transcription-translation Coupling **Complexes Resolved by Single Particle Analysis**

- Sample preparation:
 - Synthetic nucleic acid scaffolds
 - DNA and mRNA determinants for formation of transcription elongation complex (TEC)
 - An mRNA AUG codon: formation of translation complex
 - An mRNA spacer between TEC and AUG
 - RNAP
 - Ribosome and tRNA^{fMet}
 - NusG and NusA: coordination of TEC and robosome

Structures of Transcription-translation Coupling Complexes Resolved by Single Particle Analysis

- Structures
 - TTC-A vs TTC-B
 - Unambiguous rigid-body docking of RNAP and Ribosome
 - mRNA spacer at RNAP ribosome interface
 - Manual fitting of NusA and NusG at RNAP-ribosome interface → only TTC-B is physiologically relevant

RUTGERS

In-cell Architecture of an Actively Transcribingtranslating Expressome

- Sample preparation
 - Cell system: Mycoplasma pneumoniae
 - Cryo-ET of whole cell
- Extract ribosome subtomogram
- Classification and refinement

O'Reilly, F. J. et al., Science 2020

In-cell Architecture of an Actively Transcribingtranslating Expressome

- Structure of transcriptiontranslation coupling complex
 - In-cell cross-linking mass spectrometry data guide density assignment and model fitting
 - Integrative model to understand RNAP-ribosome interface and to resolved binding sites for NusG and NusA
 - mRNA path not resolved

In-cell Architecture of an Actively Transcribingtranslating Expressome

- Functional studies using translation and transcription inhibitors
 - Changed the percentage of expressome
 - Changed expressome architecture

17

Let's Summarize: Single Particle vs Tomography

• Sample preparation

TGERS

- Purification & *in vitro* reconstituted system vs cells
- Imaging & data processing

Single Particle

mRNA TTC TTC EMDB PDB cryo-EM particles resolution subclass facility spacer class code code 3.7 Å NusG-TTC-A NCCAT 139.302 21386 6VU3 4 TTC-A NusG-TTC-A TTC-A 27,378 3.7 Å 21468 6VYQ 5 Rutgers 3.8 Å 6 NusG-TTC-A TTC-A Rutgers 24,582 21469 6VYR 3.7 Å 7 NusG-TTC-A TTC-A Rutgers 29,704 21470 **6VYS** 6.3 Å 8 NusG-TTC-A TTC-A 1,957 22193 6XIJ Rutgers 5 TTC-A 4.1 Å 21494 TTC-A Rutgers 27,650 6VZJ 3.9 Å 8 TTC-A TTC-A Rutgers 10,379 12.6 Å 8 NusG-TTC-B TTC-B 435 22192 6XII Rutgers 4.7 Å 9 NusG-TTC-B TTC-B 6,121 22142 6XDR Rutgers 5.0 Å 10 NusG-TTC-B TTC-B Rutgers 4.617 22181 6XGF 8 NusA-NusG-TTC-B TTC-B1 NCCAT 38,958 3.2 Å 22082 6X6T 3.5 Å 8 NusA-NusG-TTC-B TTC-B2 NCCAT 22084 6X7F 45,451 3.1 Å 8 NusA-NusG-TTC-B TTC-B3 NCCAT 61,683 22087 6X7K 5.9 Å 9 NusA-NusG-TTC-B TTC-B1 2,558 Rutgers 9 NusA-NusG-TTC-B TTC-B2 Rutgers 21,740 4.2 Å 9 TTC-B3 4.8 Å 22107 6X9Q NusA-NusG-TTC-B Rutgers 11,509 4.9 Å 10 NusA-NusG-TTC-B TTC-B1 4,236 Rutgers 3.7 Å 10 NusA-NusG-TTC-B TTC-B3 22141 6XDQ Rutgers 19,968 8 NusA-TTC-X TTC-X 759 9.3 Å Rutgers

Table S1. Cryo-EM structures: NusG-TTC-A, NusG-TTC-B, and NusA-NusG-TTC-B (n = 4, 5, 6,

7, 8, 9, or 10; with CHAPSO)

Wang C. et al., Science 2020

O'Reilly, F. J. et al., Science 2020

Let's Summarize: Single Particle vs Tomography

• Sample preparation

GERS

- Purification & in vitro reconstituted system vs cells
- Imaging & data processing
- Resolution & interpretation
 - Single particle: atomic resolution maps to allow unambiguous fitting and direct modeling of individual protein/RNA components
 - Cryo-ET: subnanometer resolution subtomogram averages combined with integrative modeling to reveal complex architecture in cellular & functional settings

Why Tomography?

• Sample has a unique structure or is heterogenous

• Sample in a complex environment

Applying Cryo-ET to Reveal Protein Structure *in situ* – The Workflow

CelPress

Article

The In Situ Structure of Parkinson's Disease-Linked LRRK2

Reika Watanabe,^{1,6,7} Robert Buschauer,^{1,6,8} Jan Böhning,^{1,9,6} Martina Audagnotto,^{1,10} Keren Lasker,² Tsan-Wen Lu,³ Daniela Boassa,⁴ Susan Taylor,^{3,5} and Elizabeth Villa^{1,11,*}

Structure of LRRK2

- LRRK2: (Leucine-rich repeat kinase 2) the most mutated gene in familial Parkinson's disease
- Functions in neurite outgrowth, membrane trafficking, autophagy
- Mutations or pharmacological inhibition of kinase activity recruit LRRK2 to microtubules
- Multi-domain protein; structure of the full-length protein is not available.

Guaitoli, G. et al., PNAS 2016

Workflow

Watanabe, R. et al., Cell 2020

Step 1: Design and Prepare Cells to Allow Detection of Targets in the Crowded Environment

- Correlative Light and Electron Microscopy (CLEM)
- Increasing abundance for easy detection

Step 2: Focused Ion Beam Milling to Generate Thin Cell Lamella for Cryo-ET

- Cells on grids: $1 5 \,\mu m$
- Lamella: 100– 150 nm

Step 3: Cryo-ET Imaging and Tomogram Reconstruction

• Use CLEM to guide tilt series data collection

Watanabe, R. et al., Cell 2020

Step 4: In situ Structure Analysis

• Distribution and dynamics in cells

Step 5: Subtomogram Analysis

- Extraction
- Classification
- Averaging
- Model fitting

Watanabe, R. et al., Cell 2020

RUTGERS

Step 6: Integrative Modeling

 Details in domain organization can be deduced from nanometer resolution maps

Watanabe, R. et al., Cell 2020

Step 7: Functional Analysis

Disturbing structure

Variations of functions

Summary

- What is cryo-ET
- Single particle vs cryo-ET
- Cryo-ET workflow
 - Sample/cell preparation
 - CLEM to identify targets in crowded cellular environments
 - FIB milling to prepare thin lamella for cryo-ET imaging
 - Subtomogram analysis
 - Integrative modeling to reveal details in domain organization

References

1. Wrapp, D. *et al.* Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science* **367**, 1260-1263, doi:10.1126/science.abb2507 (2020).

2. Yao, H. et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell 183, 730-738 e713,

doi:10.1016/j.cell.2020.09.018 (2020).

3. Klein, S. *et al.* SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. *Nat Commun* **11**, 5885, doi:10.1038/s41467-020-19619-7 (2020).

4. Yin, W. *et al.* Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. *Science* **368**, 1499-1504, doi:10.1126/science.abc1560 (2020).

5. Wang, C. *et al.* Structural basis of transcription-translation coupling. *Science* **369**, 1359-1365, doi:10.1126/science.abb5317 (2020).

6. O'Reilly, F. J. *et al.* In-cell architecture of an actively transcribing-translating expressome. *Science* **369**, 554-557, doi:10.1126/science.abb3758 (2020).

7. Deniston, C. K. *et al.* Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. *Nature* **588**, 344-349, doi:10.1038/s41586-020-2673-2 (2020).

8. Watanabe, R. *et al.* The In Situ Structure of Parkinson's Disease-Linked LRRK2. *Cell* **182**, 1508-1518 e1516, doi:10.1016/j.cell.2020.08.004 (2020).