CRYOEM 001: TOOLS OF THE TRADE - MICROSCOPES AND DETECTORS

NCCAT Embedded Training — Master Class series

September 2020

New York Structural Biology Center

CRYOEM 001: SINGLE PARTICLE MASTERCLASS

Introduction to cryoEM: SPA

Building a cryoEM toolkit

EM compatible samples

EM support films and grids

Sample preparation

Tools of the trade:
microscopes and detectors

Microscope operations

Data collection strategies

Data assessment & QC

Data processing:

cryoEM IT infrastructure

On-the-fly feedback

3D Reconstruction

Visualization and validation

CRYOEM: SCALE WITHIN BIOLOGY

Electron Microscopy animal cells proteins, antibodies small molecules ribosomes human hair chromosomes DNA bases 0.1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 nm 1 mm carbon nanotubes electromechanical, fluidic, optical, crystalline lattices gates of transistors DNA microarrays quantum dots magnetic microsystems X-ray https://en.wikipedia.org/wiki/Nanoscopic_s Naked eye **NMR** Light microscopy **AFM**

WHAT BROUGHT ABOUT THE RESOLUTION REVOLUTION

(~2012-2014)

Microscopes

Direct Detectors

Computers

THE ELECTRON MICROSCOPE

Ruska and Knoll in Berlin in the early 1930s

-Wikipedia

Main beam electrons

WHY ELECTRONS

Pros

Small wavelength

Can be focused

Cons

Damages sample

worse with faster electrons

Poor penetration

better with faster electrons

CRYOEM MODALITIES AND TOOLS

Approach

Sample

CRYOEM TOOLS

MAIN PARTS OF AN EM

Electron sources

Vacuum systems

Lenses

Detectors

ELECTRON SOURCES

What are the 3 main kinds of electron sources?

Thermionic emission source

Field emission source

www.thermofisher.com

nanoscience.com

ELECTRON SOURCES

How fast are the electrons moving?

https://www.youtube.com/watch?v=tYCET6vYdYk

ELECTRON SOURCES

How fast are the electrons moving?

https://www.youtube.com/watch?v=tYCET6vYdYk

ELECTRON SOURCES & TYPES OF EMS

https://ideas.lego.com/projects/102281

ELECTRON SOURCES & TYPES OF EMS

80-120 kV: JEM 1230; Tecnai T12

W or LaB6

High contrast & robust

sub-nm resolution

200 kV: JEM 2100F, Tecnai F20, Talos, Artica

FEG

2+ Å resolution (3.5-4 Å)

300 kV: JEM 3200FSC, cryo-ARM, Krios, Polara

FEG

Smaller effect on unwanted lens aberration 1.5-3 Å resolution

ELECTRON SOURCES & TYPES OF EMS

3 MV: Hitachi H3000 LaB6

uhvem.osaka-u.ac.jp

Why do we need a vacuum?

Beam coherence - at STP mean free path ~ 1 cm

Insulation - interaction between e- and air

Filament - O2 will burn out source

Contamination - reduce interaction gas, e-beam and sample

What types of pumps do we have?

1 mm Hg = 1 Torr =
$$10^2$$
 Pa
1 atm = 760 Torr = 7.5×10^4 Pa

PVP / Rotary 1-10⁻³ Torr | >0.1 Pa

Diffusion 10⁻³-10⁻⁶ Torr | 0.1-10⁻⁴ Pa

Turbo 10⁻⁶-10⁻⁹ Torr | 10⁻⁴-10⁻⁷ Pa

IGP 10⁻⁹-10⁻¹² Torr | 10⁻⁷-10⁻⁹ Pa

What types of pumps do we have?

Gun

10⁻⁹ Torr

 $1 \text{ mm Hg} = 1 \text{ Torr} = 10^2 \text{ Pa}$

1 atm = $760 \text{ Torr} = 7.5 \times 10^4 \text{ Pa}$

Specimen

10⁻⁶ -10⁻⁷ Torr

Chamber and Camera

10⁻⁵ -10⁻⁶ Torr

LENSES

What types of lenses do we have?

LENSES Microscope Alignments What to do & what not to do

Do:

- Start at eucentric height and focus
- Check if it is already good before attempt
- Align from top to bottom

Not to do:

- Align without a way to undo
- Align when TEM is not stable (i.e., temperature)

DETECTORS

Digital Cameras for TEM

Photon converted

Direct sensing

DETECTORS

Detector Performance Characterization

MTF (Modulation Transfer Transform) contribute to signal envelope

DQE (Detector Quantum Efficiency) S/N over spatial frequency range

DETECTORS

Detector Performance Characterization

dectris.com Ruskin, et al JSB

NIH P41 - National Biomedical Technology Research Resources (BTRR)

ANATOMY OF AN SEM

ANATOMY OF AN SEM

Electron gun: range from tungsten filaments in lower vacuum SEMs to FEGs which need modern high vacuum SEMs

Beam energy: 0.2 – 40 keV is focused by a condenser lens system into a spot of 0.4 – 5 nm

Beam is deflected by very fast scanning coils and rasters the sample surface

Typical resolution of SEM is between 1 and 20 nm where the record is 0.4 nm

ANATOMY OF AN SEM — VACUUM SYSTEMS

ANATOMY OF AN SEM — BEAM SAMPLE INTERACTIONS

ANATOMY OF AN SEM — BEAM SAMPLE INTERACTIONS & IMAGE FORMATION

ANATOMY OF AN SEM — BEAM SAMPLE INTERACTIONS & IMAGE FORMATION

cryoEM 001 : Single Particle Masterclass

- 1. Building a cryoEM toolkit
- 2. EM compatible samples
- 3. EM support films and grids
- 4. Sample preparation
- Tools of the trade:microscopes and detectors
- 6. Microscope operations
- 7. Data collection strategies
- B. Data assessment & QC
- 9. Data processing:
 - cryoEM IT infrastructure
 - On-the-fly feedback
 - 3D Reconstruction
- 10. Visualization and validation