

New York Structural Biology Center

CRYOEM 001: SINGLE PARTICLE MASTERCLASS

Introduction to cryoEM: SPA

Building a cryoEM toolkit

EM compatible samples

EM support films and grids

Sample preparation

Tools of the trade:
microscopes and detectors

Microscope operations

Data collection strategies

Data assessment & QC

Data processing:

cryoEM IT infrastructure

On-the-fly feedback

3D Reconstruction

Visualization and validation

RT & CRYO SAMPLE PREP METHODS

HOW ARE SAMPLES PREPARED?

HOW ARE SAMPLES PREPARED?

PLUNGE FREEZING

WHAT DO GRIDS LOOK LIKE?

LOW DOSE IMAGING

WHAT ISSUES ARISE?

orientation

going into holes

of particles

disappearing in ice

WHAT ISSUES ARISE?

110 nm աս գլ ice **Aldolase**

45 nm ice

Hemagglutinin

wu 09

50 nm ice

Hemagglutinin

Noble AJ, et al. Routine single particle CryoEM sample and grid **GDH** characterization by tomography. աս գջ Elife. 2018;7.

135 nm

ლი შნ

115 nm ice

110 nm

DNAB Helices

REAGENTS FOR IMPROVING VITRIFICATION OF CRYO-EM GRIDS USED IN SINGLE PARTICLE ANALYSIS.

Molecular Formula: (C6.2H10.3O1.35N0.65Na0.35)35

Molecular Weight: approx. 8 kDa

CAS#: 1423685-21-5

Amphipol A8-35

A short amphipathic polymer that is specifically designed for membrane protein stabilization. The surfactant possesses a very high affinity for the transmembrane surfaces and allows to solubilize membrane proteins in a detergent-free aqueous solution

REAGENTS FOR IMPROVING VITRIFICATION OF CRYO-EM GRIDS USED IN SINGLE PARTICLE ANALYSIS.

Surfactants and Cryoprotectants	Amount	Conc.	СМС	Class
Fluorinated Octyl Maltoside (FOM)	100 μl	0.41% (w/v)	0.07% (w/v)	non-ionic detergent
Hexadecyl-trimethyl-ammonium Bromide (CTAB)	100 μl	0.34% (w/v)	0.03% (w/v)	cationic detergent
n-Decyl-ß-D-Maltoside (DM)	100 μl	0.87% (w/v)	0.09% (w/v)	non-ionic detergent
n-Decyl-α-D-Maltoside (DαM)	100 μl	0.46% (w/v)	0.08% (w/v)	non-ionic detergent
n-Dodecyl-ß-D-Maltoside (DDM)	100 μl	0.09% (w/v)	0.01% (w/v)	non-ionic detergent
Sodium Deoxycholate	100 μl	1.66% (w/v)	0.17% (w/v)	anionic detergent
Triton X-100	100 μl	0.15% (w/v)	0.01% (w/v)	non-ionic detergent
Tween 20	100 μl	1% (w/v)	0.01% (w/v)	non-ionic detergent
CHAPSO	100 μl	2.5% (w/v)	0.5% (w/v)	zwitterionic detergent
Amphipol A8-35	100 μl	5% (w/v)		anionic surfactant
Glycerol	1 ml	30% (w/v)		cryoprotectant

[1] Noble et al. (2018) Routine Single Particle CryoEM Sample and Grid Characterization by Tomography. DOI: 10.7554/eLife.34257.

[2] Thonghin et al. (2018) Cryo-electron microscopy of membrane proteins. Methods 147:176.

[3] Drulyte et al. (2018) Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Cryst.

[4] Glaeser et al. (2017) Opinion: hazards faced by macromolecules when confined to thin aqueous films. Biophys Rep 3:1.
[5] Gatsogiannis et al. (2016). Membrane insertion of a Tc toxin in near-atomic

detail. Nat. Struct. Mol. Biol. 23:884.

[6] Efremov et al. (2015) Architecture and conformational switch mechanism of the ryanodine receptor. *Nature* **517**:39.

https://www.mitegen.com/product/cryo-em-vitrification-starter-kit/

FIB/SEM VS THIN SECTION SAMPLE PREP

- Chemical fixation
- Staining
 En bloc, enhanced contrast and electrical conductivity
- Dehydration
- Embedding
- Au/Pd coat Conductivity

Cryofixation: High pressure freezing

Dehydration: Freeze substitution

- Chemical fixation
- Dehydration
- Embedding
- Sectioning
- Staining

CRYO FIB MILLING

CRYO FIB MILLING

BLOT FREE VITRIFICATION

SPOTITON | CHAMELEON

SPOTITON | CHAMELEON

WHAT NEXT?

cryoEM 001 : Single Particle Masterclass

- 1. Building a cryoEM toolkit
- 2. EM compatible samples
- 3. EM support films and grids
- 4. Sample preparation
- Tools of the trade:microscopes and detectors
- 6. Microscope operations
- 7. Data collection strategies
- 8. Data assessment & QC
- 9. Data processing:
 - cryoEM IT infrastructure
 - On-the-fly feedback
 - 3D Reconstruction
- 10. Visualization and validation