Winter 2020
EM Course

Single-particle workflow

Amedee des Georges
Movie alignment

• Alignment of all frames to their average

Movie alignment

- Sub-frame alignment
Movie alignment

• Sub-frame alignment
Movie alignment

- Per-particle alignment
 - Relion “polishing”
 - alignment to a reference
 - estimation of contrast loss per frame

- alignparts_lmbfgs (Rubinstein/cryoSPARC):
 - alignment to self.
 - No re-estimation of contrast loss per frame.
Movie alignment

- Per-particle alignment.
Movie alignment

- Contrast loss and radiation damage correction
CTF estimation

• Contrast transfer function correction
 ➢ Estimating the defocus value of a micrograph
CTF estimation

• Contrast transfer function correction
 ➢ Estimating the defocus value of a micrograph
CTF estimation

- Contrast transfer function correction
 - Critical for resolution!

Fig. 5 Defocus spread envelope functions at 300kV. Envelope functions calculated according to Frank (1973) and Wade and Frank (1977) with the SPIDER command TF D.
CTF estimation

- Contrast transfer function correction
 - Estimating defocus per particle
CTF estimation

• Contrast transfer function correction

Estimating defocus per particle

Tegunov and Cramer, Bioxiv 2018
CTF estimation

• Contrast transfer function correction
 ➢ Correction of higher order aberrations
 o At the stage of 3D refinement.
Particle picking

• Deep learning algorithms win over all.
Particle picking

- Deep learning algorithms win over all.

Tegunov and Cramer, Biorxiv 2018
Particle picking

- Deep learning algorithms win over all.
 - Warp
 - crYOLO
 - Topaz

Tegunov and Cramer, BioRxiv 2018
Initial cleaning of particles

• Many ways of doing it

 ➢ Sorting based on statistics
 ➢ 2D classification
 ➢ Multi-reference ab-initio
 ➢ 3D classification
Initial cleaning of particles

• Many ways of doing it

- Sorting based on statistics
- 2D classification
- Multi-reference ab-initio
- 3D classification
Initial cleaning of particles

• Many ways of doing it

 ➢ Sorting based on statistics

 ➢ 2D classification

 ➢ Multi-reference ab-initio

 ➢ 3D classification
Initial cleaning of particles

• Many ways of doing it
 - Sorting based on statistics
 - 2D classification
 - Multi-reference ab-initio
 - 3D classification
Aligning particles in 3D

- Precision and accuracy -> critical for resolution AND classification.
Aligning particles in 3D

- Precision and accuracy -> critical for resolution AND classification.

<table>
<thead>
<tr>
<th>Resolution (Å)</th>
<th>Sampling (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>8.1</td>
</tr>
<tr>
<td>30</td>
<td>4.9</td>
</tr>
<tr>
<td>20</td>
<td>3.3</td>
</tr>
<tr>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td>12</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>1.6</td>
</tr>
<tr>
<td>8</td>
<td>1.3</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>0.82</td>
</tr>
<tr>
<td>4</td>
<td>0.65</td>
</tr>
<tr>
<td>3</td>
<td>0.49</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
</tr>
<tr>
<td>1</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Table 2 Angular sampling necessary to obtain a given resolution according to the Shannon theorem.

Des Georges et al., 2013. Applied and Numerical Harmonic Analysis
Aligning particles in 3D

- Precision and accuracy -> critical for resolution AND classification.
Aligning particles in 3D

• Local refinement
Aligning particles in 3D

- Local refinement

Oliver Clarke et al., Unpublished
Winter 2020
EM Course

Single-particle workflow

Amedee des Georges