

Winter 2020 EM Course

SIMONS ELECTRON MICROSCOPY CENTER

Single-particle workflow

Amedee des Georges

• Alignment of all frames to their average

Li, X. et al. Nat. Methods 10, 584–590 (2013).

• Sub-frame alignment

• Sub-frame alignment

Zheng et al. N. Meth 2019

- Per-particle alignment
 - Relion "polishing"
 - alignment to a reference
 - estimation of contrast loss per frame
 - alignparts_Imbfgs (Rubinstein/cryoSPARC):
 - alignment to self.
 - No re-estimation of contrast loss per frame.

• Per-particle alignment.

Contrast loss and radiation damage correction

Contrast transfer function correction Estimating the defocus value of a micrograph

Contrast transfer function correction Estimating the defocus value of a micrograph

Contrast transfer function correction

>Critical for resolution!

Fig. 5 Defocus spread envelope functions at 300kV. Envelope functions calculated according to Frank (1973) and Wade and Frank (1977) with the SPIDER command TF D.

Contrast transfer function correction Estimating defocus per particle

Contrast transfer function correction
Correction of higher order aberrations

 $\,\circ\,$ At the stage of 3D refinement.

Particle picking

• Deep learning algorithms win over all.

Particle picking

• Deep learning algorithms win over all.

Original image

BoxNet, generic

RELION, Gaussian blob

BoxNet, re-trained

RELION, 2D class templates

Tegunov and Cramer, Biorxiv 2018

Particle picking

• Deep learning algorithms win over all.

✓ Warp✓ crYOLO✓ Topaz

BoxNet, generic

RELION, Gaussian blob

BoxNet, re-trained

RELION, 2D class templates

Tegunov and Cramer, Biorxiv 2018

• Many ways of doing it

Sorting based on statistics

➢ 2D classification

Multi-reference ab-initio

➢ 3D classification

- Many ways of doing it
 - Sorting based on statistics
 - 2D classification
 - Multi-reference ab-initio
 - ➢ 3D classification

1645 ptcls	1609 ptcis	1605 ptcis	1548 ptcis	1542 ptzis	1540 ptcls	1503 ptcls	1499 ptcls	1490 ptcls	1488 ptcis
	(1)		8	6	8	-	-	6	
-12.5 A 3 ess	11.9 A 3 ess	7.3 A 2 ess	17.1 A 2 055	13.4 A 2 ess	7.3 A 2 ess	11.9 A 2 655	7.3 A 2 65	-13.6 A 2 ess	-16.4 A 3 ess
1473 ptcis	2453 ptch :	2,449 ptcls	1438 ptcls	2427 ptcls	1412 ptcls	1396 ptcls	1393 ptcls	1385 ptcis	1384 ptcls
-955		- 394	. 64	18	8	14	100		80
11.5 A 2 ess	10.4 A 2.055	7.3 A 2 ess	7.6 A 2 ess	12.8 A 2 ess	7.6 A 2 ess	16,9 A 3 ess	12.5 A 2 ess	14:1 A 3: ess	7.3 A 2 ess
1381 ptcls	1376 ptcis	1374 ptcis	1370 ptcls	1363 ptch	1344 ptcls	1332 ptc/s	1329 ptcls	1320 ptcis	1306 ptcts
		- 3	•15	-395	-		-		-
16.6 A 2 ess	7.3 A 2 ess	12.6 Å 3 ess	15:4 Å 2 ess	11.3 A 2 ess	7.3 Å 3 ets	13.1 A 2 ess	16.8 Å 2 ess	12.2.4.3 ess	7.7 A 3 ess

• Many ways of doing it

Sorting based on statistics

➢2D classification

➢ Multi-reference ab-initio

➢ 3D classification

- Many ways of doing it
 - Sorting based on statistics
 - ➢2D classification
 - Multi-reference ab-initio
 - ➤ 3D classification

• Precision and accuracy -> critical for resolution AND classification.

Des Georges et al., 2013. Applied and Numerical Harmonic Analysis

• Precision and accuracy -> critical for resolution AND classification.

Table 2 Angular sampling necessary to obtain a given resolution according to the Shannon theo-rem.

Resolution (Å)	Sampling (°)				
50	8.1				
30	4.9				
20	3.3				
15	2.5				
12	2.0				
10	1.6				
8	1.3				
6	1.0				
5	0.82				
4	0.65				
3	0.49				
2	0.33				
1	0.16				

Des Georges et al., 2013. Applied and Numerical Harmonic Analysis

• Precision and accuracy -> critical for resolution AND classification.

Des Georges et al., 2013. Applied and Numerical Harmonic Analysis

Local refinement

Oliver Clarke, et al., Unpublished

• Local refinement

Oliver Clarke et al., Unpublished

Winter 2020 EM Course

SIMONS ELECTRON MICROSCOPY CENTER

Single-particle workflow

Amedee des Georges