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Single-particle reconstruction, part II, version 2.1 
	
	
In	this	lecture	we’ll	consider	some	of	the	basic	concepts	behind	cryo-EM	single-particle	
structure	determination.		
	
Image-matching	
	
Last	time	we	saw	how,	if	we	know	the	projection	directions,	we	can	use	the	Fourier	slice	
theorem	to	make	a	3D	reconstruction.		The	trick	will	be	to	determine	the	projection	
direction	corresponding	to	each	of	many	single-particle	images.		Another	thing	we	will	
want	to	do	is	to	group	together	similar	images	and	average	them,	so	that	we	can	see	what	
our	particles	look	like.		For	both	of	these	steps	we	wish	to	find	the	best	match	between	a	
given	particle	image	and	a	reference	image	of	some	sort--either	a	class-average	image	or	a	
projection	of	a	3D	model.		There	are	two	popular	ways	to	compare	images.	
	
1.	Cross-Correlation.		The	comparison	between	two	images	is	made	just	by	multiplying	
each	pair	of	corresponding	pixel	values,	and	then	summing	up	the	products	to	yield	the	
value	𝑐" .		Suppose	𝜌(𝑥, 𝑦)	is	the	pixel	at	(𝑥, 𝑦)	of	particle	image	and	𝑟"(𝑥, 𝑦)	is	the	
corresponding	pixel	of	the	ith	member	of	a	set	of	reference	images.		Then	we	compute	the	
correlation	𝑐" 	for	each	of	the	references	
	

𝑐" = ∑ 𝜌(𝑥, 𝑦)𝑟"(𝑥, 𝑦),,- ,	 	 	 (1)	
	
If	𝜌	and	𝑟"		match	well,	the	value	of	𝑐" 		will	be	a	large	positive	value;	if	the	two	images	are	
uncorrelated,	the	value	of	𝑐" 	will	be	about	zero.			
	
A	problem	with	the	correlation	as	defined	here	is	that	a	maximum	value	could	result	from	a	
poorly-matching	reference	that	however	has	very	large	pixel	values.		To	avoid	this	problem	
one	can	instead	use	the	correlation	coefficient,	𝑐̂" 	which	is	obtained	by	normalizing	the	
value	of	𝑐" 	by	the	magnitudes	of	𝜌	and	𝑟" ,	
	
	 	 	 	 	 𝑐"̂ =

∑ 0(,,-)12(,,-)3,4

5∑ 06(,,-)3,4 5∑ 12
6(,,-)3,4

	

	
2.		Squared	difference.		We	can	just	subtract	the	two	images	and	compute	the	sum	of	the	
squared	residuals,	
	 	 	 	 	 𝑠"8 = ∑ [𝜌(𝑥, 𝑦)−𝑟"(𝑥, 𝑦)]8,,- 		 	 (2)	
	
Which	we	can	write	compactly	as	
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	 	 	 	 	 𝑠"8 = ‖𝜌−𝑟"‖8	
	
If	we	expand	the	square	in	eqn.	(2)	we	see	that	
	
	 	 	 	 𝑠"8 = ‖𝑥‖8 + ‖𝑟"‖8 − 2∑ 𝜌(𝑥, 𝑦)𝑟"(𝑥, 𝑦),,- 	 	 	 (3)	
	
where	for	image	𝜌	the	squared	magnitude	‖𝜌‖8	is	defined	to	be	the	sum	of	the	squares	of	
all	the	pixel	values.		If	the	squared	magnitude	of	all	the	𝑟" 	are	the	same,	then	minimizing	𝑠"8	
is	just	the	same	as	maximizing	the	correlation	𝑐" 	(eqn.	1).	
	
Cross-correlation	and	particle	picking	

	
An	important	use	for	the	ideas	of	image	
matching	is	the	process	of	particle	
selection	(“particle	picking”)	on	
micrographs.	Basically,	we	take	one	or	
more	reference	particle	images	and	
compute	the	correlation,	correlation	
coefficient,	or	squared	difference	
between	the	reference	and	each	local	
position	in	the	micrograph.		We’ll	note	
the	places	where	we	get	a	good	score,	
and	say	we’ve	found	a	particle	there.	
	
To	start	with,	we’ll	do	the	translational	
cross-correlation.	We	want	to	search,	at	
every	pixel	position	(𝑥, 𝑦)	in	a	
micrograph,	the	possible	match	of	that	
neighborhood	with	a	reference	particle	
𝑟"(𝑠, 𝑡).	We’ll	evaluate	the	correlation	
as	a	sum	over	discrete	𝑠	and	𝑡,	
	
	

	 	 	 	 𝑐"(𝑥, 𝑦) = ∑ 𝑚(𝑥 + 𝑠, 𝑦 + 𝑡)𝑟"(𝑠, 𝑡)A,B 	 	 	 (4)	
	
The	correlation	function	𝑐" 	will	have	maxima	where	there	is	a	good	match,	and	if	we	choose	
the	positions	(𝑥, 𝑦)	of	the	maxima	you	will	have	found	a	place	where	m	locally	matches	𝑟" .	
There	is	an	efficient	way	to	compute	the	correlation	function	using	the	Fourier	transform	
(see	Appendix	1).	
	
Figure	2	shows	an	example	of	a	cross-correlation	calculation	underlying	the	particle	
selection	process.	A	portion	of	the	micrograph	(Fig.	2A)	is	correlated	with	the	reference	
image	in	Fig.	2C.	This	reference	was	obtained	by	projecting	and	CTF-filtering	the	3D	map	of	
a	protein	homologous	to	the	one	being	analyzed.		A	peak	in	the	correlation	function	(Fig.	

Figure 1. Particle picking in a micrograph. Putative 
particles are indicated by green boxes. Axes are labeled 
with pixel numbers for this image, which was "binned" 
by a factor of 4 from a K2 micrograph.	
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2D)	indicates	a	good	match	with	the	
reference.	This	reference	will	match	
only	one	view	of	a	3D	particle.		For	
completeness	in	this	case	the	final	result	
was	obtained	by	performing	a	total	of	
109	correlation	calculations.	A	set	of	72	
references	were	obtained	as	various	
projections	of	the	model.	Another	set	of	
33	“decoy”	references	were	also	used,	
designed	to	catch,	and	eliminate	from	
detection,	ice	balls	and	other	artifacts.	
Fig.	2B	shows	models	of	the	detected	
particles,	based	on	the	best-matching	of	
the	72	references.	
	
	
	
	
	
	
	
	
	

Random	variables	and	noise	
	
Before	we	go	further,	let’s	review	some	properties	of	random	variables.	We	say	that	
	

𝑏	~	𝒩(0, 𝜎8)	 	 	 	 (5)	
	
means	that	the	random	variable	𝑏	is	drawn	from	a	normal	distribution	with	mean	equal	to	
zero	and	variance	equal	to	𝜎8.	If	we	take	many	instances	of	𝑏	(for	example,	imagine	
repeated	experiments	in	which	the	quantity	𝑏	is	measured)	we	will	find	that	their	average	
value	tends	to	zero	and	the	average	value	of	𝑏8	will	tend	to	𝜎8.	The	variables	will	be	
statistically	independent,	which	means	that	individual	instances	are	uncorrelated.	Suppose	
𝑏H	and	𝑏8	are	two	instances	of	𝑏.	“Uncorrelated”	means	that	the	product	𝑏H𝑏8	will,	over	
many	trials,	average	out	to	zero.	
	
The	sum	of	two	such	variables,	say	𝑦 = 𝑏H + 𝑏8	will	have	variance	2𝜎8,	and	in	general,	if	
you	add	two	random	variables,	their	variances	will	add.		What	if	you	make	a	weighted	sum	
of	𝑘	random	variables?	Let	
	 	 	 	 𝑦 = ∑ 𝑎"𝑏"K

"LH 	 	 	 	 	 (6)	
	
Where	the	𝑎" 	are	known,	non-random	numbers	that	represent	weights,	and	𝑏" 	are	random	
variables	as	in	eqn.	(5).	Then	the	variance	of	y	is	given	by	the	variances	of	the	𝑏" 	times	the	
square	of	the	weights,	

Figure 2. Cross-correlation with a reference. A, portion 
of a micrograph with the final particle locations 
marked. B, idealized picture showing the best-
matching references. C, a single reference projection. 
D, the cross-correlation of the image with that 
reference. The white spot in the middle represents a 
correlation peak.	
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	 	 	 	 var(𝑦) = 	∑ 𝑎"8𝜎8K

"LH 	 	 	 	 (7)	
	
You	may	be	familiar	with	this,	as	it	is	a	standard	formula	in	computing	the	propagation	of	
errors	in	an	experimental	measurement.	
	
Finally,	we	need	to	understand	the	probability	density	function.	This	is	the	function	that	
you	would	need	to	know	if	you	wish	to	fit	a	histogram	of	values	of	a	random	variable.	
Suppose	you	make	n=10000	measurements	of	the	𝑏" 	and	plot	a	histogram	like	this:	
	

	
How	do	you	compute	the	smooth	curve	to	plot	on	top	of	it?	The	values	will	depend	on	n	and	
on	the	width	of	the	bins	(0.1	in	this	case),	and	you	will	multiply	both	of	these	times	a	
function	that	tells	the	probability	of	an	instance	of	𝑏" 	falling	in	the	neighborhood	of	a	
particular	value	𝜒.	That	function	is	called	the	probability	density	function,	and	for	a	normal	
distribution	it	is	
	
	 	 	 	 𝑓(𝜒) = H

√8S
𝑒UV6/8X6 .	 	 	 	 (8)	

	
Roughly	speaking,	𝑤𝑓(𝜒)	is	the	probability	of	finding	an	𝑏" 	value	in	a	band	of	width	w	in	the	
vicinity	of	𝜒.	Formally	to	find	the	probability	P	that	the	value	of	an	𝑏" 	falls	in	the	interval	
between	values	𝜒H	and	𝜒8	you	integrate	values	of	𝑓,	
	
	 	 	 𝑃(𝑏" ∈ [𝜒H, 𝜒8]) = 	∫ 𝑓(𝜒)𝑑𝜒V6

V^
	 	 	 (9)	

	
Likelihood	
	
We	can	compute	the	probability	that	image	𝜌	actually	is	a	noisy	copy	of	the	underlying	
reference	image	𝑟_ .		To	do	this	we	make	a	model	of	the	process	by	which	image	𝜌	is	formed.		
We’ll	model	the	noise	as	a	Gaussian	random	value	added	to	each	pixel,	with	the	random	
numbers	having	zero	mean	and	variance	𝜎8.		We’ll	represent	this	added	noise	as	a	“noise	
image”	n:	
	
	 	 	 	 	 𝜌(𝑥, 𝑦) = 𝑟_(𝑥, 𝑦) + 𝑛(𝑥, 𝑦)	 	 (10)	
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The	probability	of	observing	a	particular	value	at	a	particular	pixel,	say	𝜌(𝑥H, 𝑦H)	can	be	
calculated	from	the	probability	density	function	of	a	Gaussian	centered	on	the	expectation	
value	𝑟(𝑥H, 𝑦H),	
	
	 	 	 𝑃{𝜌(𝑥H, 𝑦H) ∈ [𝜒 − 𝑤, 𝜒 + 𝑤]} =

8c
√8S

𝑒U[0U1(,^,-^)]6/8X6 	 (11)	
	
Specifically,	we	are	considering	the	probability	of	𝜌	falling	in	a	band	of	values	of	width	2𝑤	
centered	on	a	given	value	𝜒.	
	
What	is	the	probability	that	all	of	the	pixels	in	an	image	match	a	reference?	Since	noise	in	
the	pixels	is	statistically	independent,	we	can	calculate	this	as	the	product	of	the	
probabilities	of	every	pixel.	Suppose	there	is	a	total	of	𝐾	pixels.	The	probability	of	obtaining	
the	pixel	values	of	a	given	experimental	image	𝜌,	assuming	that	the	underlying	true	image	
is	𝑟" ,	is	
	
	 	 	 	 𝑃(𝜌|𝑟") =

H
(8SX6)g/6

𝑒UA2
6/8X6 ,	 	 	 	 	 (12)	

	
where	𝑠"8	is	the	sum	of	squared	differences	given	by	eqn.	(2),	which	we	wrote	compactly	as	
𝑠"8 = ‖𝜌−𝑟"‖8.		Note	that	I’ve	left	out,	and	will	ignore,	the	factor	𝑤h 	that	multiplies	the	
probability	density	to	give	an	actual	probability.1	
	
Now	consider	the	problem	of	determining,	based	on	a	noisy	image	𝜌,	what	is	the	underlying	
true	image	𝑟_.	We	can	test	a	variety	of	different	𝑟" 	and	we	expect	that	the	highest	probability	
𝑃(𝜌|𝑟")	will	occur	when	we’ve	found	the	best	one,	where		𝑟" = 𝑟_ .	
	
Perhaps	a	better	way	to	formulate	this	problem	is	to	try	to	maximize	the	probability	of	a	
given	𝑟" 	given	a	particular	random	observation	𝜌.		We’ll	formalize	this	by	calling	𝑟" 	the	
model and 𝜌 the data,	and say that we want to	maximize	𝑃(model|data).2	By	Bayes’	rule	
one	can	write	
	
	 	 	 𝑃(model|data) = 𝑃(data|model) × p(qrstu)

p(svwv)
	 	 (13)	

	
where	𝑃(data|model)	is	something	we	know	how	to	compute:	it	is	just	what	we	calculated	
in	eqn.	(12),	and	it	has	a	special	name,	the	likelihood.	One	writes	

                                                
1 This	is	a	common	trick:	because	we	will	never	care	about	the	absolute	magnitude	of	the	
probability,	but	will	be	only	taking	ratios	of	probabilities,	we	just	ignore	the	astronomically	small	
𝑤h 	factor! 
2 Statisticians	argue	whether	such	a	thing	can	even	be	called	a	probability,	as	a	model	is	not	strictly	
a	random	thing;	however,	others	argue	that	we	can	imagine	a	model	being	drawn	from	an	infinite	
distribution	of	possible	models.	
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	 	 	 Lik(model|data)	=	P(data|model)	

Or	in	words,	the	likelihood	of	the	model,	given	the	data,	is	just	equal	to	the	probability	of	
obtaining	the	data	given	the	model.	(We	call	it	“likelihood”	because	it	really	isn’t	a	
probability	in	itself.)	Maximum-likelihood	estimation	is	just	the	process	of	maximizing	the	
likelihood	by	picking	the	model	that	gives	the	largest	value	for	P(data|model).		This	would	
be	called	the	maximum-likelihood	estimate	(MLE).	For	example,	the	MLE	of	that	maximizes	
the	quantity	in	eqn.	(12)	is	just	the	same	as	the	model	𝑟" 	that	minimizes	the	squared	
differences	as	in	eqn.	(2).	
	
MAP	(“Bayesian”)	estimation	
	
We	can	be	a	bit	more	rigorous	by	returning	to	eqn.	(13)	and	considering	the	other	terms.	
The	quantity	P(model)	codifies	what	might	be	known	a	priori	about	the	model;	for	example	
we	might	know	that	our	model	images	are	“smooth”	in	some	sense,	or	always	have	positive	
pixel	values,	and	this	could	be	enforced	by	favoring	models	with	these	properties.	It	is	
called	the	prior	or	prior	probability	of	a	model,	in	the	sense	that	it	is	known	“prior”	to	
looking	at	any	experimental	data.		
	
The	quantity	P(data)	is	more	of	an	imponderable;	what	would	make	one	experimental	
image	(or	one	dataset)	more	probable	than	another?	So,	not	knowing	what	to	do	with	this,	
everyone	assumes	it	is	a	constant.	
	
With	these	considerations	we	can	do	one	better	than	maximum-likelihood	estimation	by	
taking	into	account	the	prior	probability	P(model).		Formally	we	define	the	posterior	
probability	(the	probability	of	the	model	after	we’ve	considered	both	the	prior	information	
and	information	from	the	data),	
	
	 	 Posterior	probability	=	𝑃(data|model) × 𝑃(model)	
	
and	finding	a	model	that	maximizes	the	posterior	probability	is	called	the	“maximum	a	
posteriori”	estimate	(MAP	estimate)	of	the	model.	The	relevance	of	all	this	is	that	the	
software	programs	Relion	and	cryoSPARC	find	MAP	estimates	of	models	(e.g.	3D	density	
maps)	from	data	(i.e.	stacks	of	single-particle	images).	
	
3D	reconstruction	in	FREALIGN	
	
Before	considering	methods	for	2D	classification,	let’s	consider	two	modern	programs	for	
the	3D	single-particle	reconstruction	(SPR).		The	first	program	that	was	developed	for	CTF-
corrected	3D	reconstruction	was	FREALIGN	(Grigorieff	1998;	2007).		It	uses	the	Wiener	
filter	framework	to	compensate	for	the	variable	amounts	of	information	available	from	
images	due	to	zeros	in	the	image	CTFs.			
	
Frealign	works	with	Fourier	transforms	of	images.	In	general	I’ll	denote	FTs	of	images	with	
capital	letters,	and	we’ll	denote	the	FT	of	an	experimental	image	𝜌	as	X.		The	first	step	in	a	
Frealign	iteration	is	to	find,	for	each	(Fourier	transformed)	experimental	image	𝑋" 	the	five	
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parameters	specifying	the	location	and	rotation	of	the	original	particle	that	gives	rise	to	the	
image.	We	denote	these	parameters	by	𝜙" ,	and	we’ll	define	the	projection	operator	𝑃z the	
operation	that	produces	a	2D	projection	from	the	3D	density,	with	the	projection	angle	
specified	by	𝜙.	The	estimated	value	of	𝜙" 	is	obtained	through	finding	the	value	of	𝜙	that	
maximizes	the	correlation	coefficient	between	𝑋" 	and	𝑃z𝑉H.	In	this	step	we	also	take	note	of	
the	maximum	correlation	coefficient,	and	from	that	value,	which	gives	an	estimate	of	the	
quality	of	that	image,	compute	a	weighting	value	𝑤" 	that	we’ll	use	in	the	reconstruction	
step.	
	
Just	as	one	can	compute	magnitudes,	differences	and	correlations	for	images,	it	is	also	
straightforward	to	compute	these	things	for	the	Fourier	transforms	of	images.		A	very	
important	theorem	says	that	the	sum	of	squares,	for	real-space	images	is	equal	to	the	sum	
of	squared	differences	for	Fourier	images:	
	

‖𝜌−𝑟"‖8 = ‖𝑋 − 𝑅"‖8		 	 (14)	
	
This	is	called	Parseval’s	theorem	and	will	allow	us	to	calculate	Gaussian	probabilities	just	
as	before.	Again,	we’ll	call	𝑋" 	the	Fourier	transform	of	the	experimental	image,	𝑉H	is	the	3D	
Fourier	representation	of	the	density	map,	and	𝑃z	is	the	operator	for	obtaining	the	FT	of	an	
image	from	the	FT	of	a	volume.		Indeed,	the	technical	advances	in	Frealign	resulted	from	
working	in	the	Fourier	domain,	and	Niko	Grigorieff	dubbed	his	program	Frealign	for	
“Fourier	Reconstruction	and	Alignment”.		
	
The	reason	for	switching	to	the	Fourier	domain	was	twofold.		First,	by	the	slice	theorem	we	
know	that	the	𝑃z	operation	is	very	simple,	it	is	just	taking	the	2D	slice	from	the	3D	Fourier	
volume	corresponding	to	the	angles	ϕ.3			Second,	we	can	easily	apply	the	contrast	transfer	
function	in	the	Fourier	domain	by	multiplying	the	Fourier	transformed	image	pixel	values	
by	it.		We’ll	denote	the	CTF	corresponding	to	particle	image	i	by	𝐶" .	
	
Before	we	look	at	the	second	step	in	the	Frealign	algorithm,	recall	from	earlier	the	idea	of	a	
Wiener	filter.		The	problem	was	how	to	deconvolve	an	image	from	the	contrast-transfer	
function	to	obtain	a	good	estimate	of	the	underlying	object.		We	can’t	just	divide	the	image’s	
Fourier	transform	by	the	CTF,	because	we	will	be	dividing	by	zero	at	the	zeros	of	the	CTF.		
The	Wiener	filter	says	we	can	get	R,	an	optimum	(least-squares)	restoration	of	the	original	
object	by	combining	the	image’s	Fourier	transform	X	and	the	CTF	C	in	this	way:	

	 	 	 	 	

𝑅 =
𝐶𝑋

𝜏 + 𝐶8	
	
That	is,	we	multiply	X	pixel-wise	by	the	CTF,	and	then	divide,	again	pixel-wise,	by	the	CTF	
squared,	with	a	small	“Wiener	constant”	𝜏	added	to	keep	the	denominator	from	going	to	
zero.	
	
                                                
3 And, translations are accounted for by the multiplication by phase factors, as we know from the shift 
property of FTs. 
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The	second	step	in	a	Frealign	iteration	is	related	to	this.		The	goal	is	to	obtain	a	refined	
estimate	of	the	3D	density	map.		Based	on	assignments	of	the	𝜙" 	based	on	the	initial	volume	
𝑉(H),	a	refined	volume	is	obtained	from	the	set	of	FTs	of	experimental	images	𝑋" 	according	
to		

	

𝑉(8) =
∑ 𝑤"𝑃z2

�
" 𝐶"𝑋"	

𝜏 + ∑ 𝑤"𝑃z2
�

" 𝐶"8
	

	 	 	 	 	 	 	 	 	 	 	 (15)	
	
Here	𝑃�is	the	transpose	of	the	P	operator.		Instead	of	extracting	a	2D	slice	from	a	3D	
Fourier	volume,	𝑃� 	inserts	a	slice.		It	takes	a	2D	image	and	creates	a	3D	volume,	whose	
voxels	are	all	zero	except	along	the	slice	where	the	image	values	have	been	placed.		
Understanding	this,	we	can	describe	the	numerator	of	eqn.	(15)	as	the	following:	we	take	
each	FT	image	𝑋" 		and	multiply	it,	pixelwise,	by	the	contrast-transfer	function.		Then	we	
insert	it	into	the	3D	volume	as	a	slice	at	the	orientation	𝜙,	multiply	by	the	weighting	value,	
and	add	up	all	the	slices.		Because	we	have	many	images	which,	we	hope,	produce	slices	at	
many	different	angles,	the	result	is	a	Fourier	volume	that	has	nonzero	values	at	(nearly)	
every	voxel.		
	
However	some	voxels	will	have	contributions	from	many	slices,	while	others	have	
contributions	from	only	a	few.		Further,	the	image	contributions	to	voxels	will	vary,	
depending	on	where	the	CTF	zeros	fall.		To	compensate	for	these	variations,	in	the	
denominator	we	accumulate	a	similar	sum	of	slices,	only	with	the	values	along	the	slices	
being	simply	the	CTF	squared.		A	small	constant	𝜏	is	added	to	the	denominator	to	avoid	
dividing	by	zero.		Note	that	this	formula	is	analogous	to	the	Wiener	filter	for	correcting	for	
CTF	effects,	where	we	multiplied	by	the	CTF	in	the	numerator	and	by	the	CTF	squared	in	
the	denominator,	with	a	net	result	of	approximately	dividing	by	the	CTF.	In	this	case	we’re	
using	a	Wiener	filter	for	the	combination	of	data	from	many	images.	The	resulting	Fourier	
volume	is	a	refined	version	of	the	starting	volume	𝑉(8)	and	with	it	the	two	steps	described	
above	are	repeated	10-20	times	until	a	stable	result	is	obtained.	Frealign	was	the	first	SPR	
program	to	handle	the	CTF	correctly,	and	was	the	first	to	yield	near-atomic-resolution	
structures	from	single	particles.	
	
3D	reconstruction	in	RELION	
	
In	the	past	few	years,	the	majority	of	high-resolution	structures	have	been	obtained	with	
RELION	(Regularized	Likelihood	Optimization;	Scheres	2012).	This	program	provides	a	
“maximum	likelihood”	solution,	actually	a	MAP	solution,	to	the	SPR	problem.		Imagine	the	
set	of	all	possible	3D	density	maps	(having	all	possible	combinations	of	voxel	values).	The	
MAP	estimate	is	the	3D	density	map	that	has	the	highest	probability	of	arising	from	the	
given	dataset	of	particle	images.	A	solution	to	this	seemingly	impossible	problem	is	
provided	by	a	famous	mathematical	result	called	the	Expectation-Maximization	(E-M)	
algorithm,	which	guarantees	that	in	each	of	its	iterations	the	result	comes	closer	to	a	local	
maximum	of	the	likelihood.	If	we	begin	with	a	good	starting	volume	that	is	“close”	to	the	
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best	solution,	then	the	E-M	algorithm	will	provide	a	refined	result	that	is	indeed	the	best	
solution.	
	
Relion	can	be	thought	of	as	a	refined	version	of	Frealign.	Whereas	Frealign	optimizes	a	
correlation	coefficient	to	find	an	optimal	orientation	
𝜙"	for	each	image, Relion	starts	with	a	function	Γ"(𝜙), called	the	𝑙𝑎𝑡𝑒𝑛𝑡	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦,		
which	is	the	probability	that	a	given	value	of	𝜙	is	the	correct	assignment	for	image	𝑋".			
Using	this	probability	function, rather	than	assigning	a	single	“best”	𝜙" 	to	each	image,	has	
the	advantage	that	Relion	can	handle	particle	images	having	such	low	signal-to-noise	ratios	
that	reliable	orientation	determination	is	not	possible.	It	also	provides	a	smoother	and	
more	reliable	convergence	to	a	final	structure,	and	allows	the	benefits	from	a	rigorous	
proof	that	the	E-M	algorithm	provides	an	optimum	solution.	
	
The	advantage	of	Relion	can	be	understood	from	what	is	being	optimized	in	comparison	to	
Frealign.	Frealign	provides	basically	an	optimization	of	Lik(model|data)	which	in	this	case	
is	
	 	 	 Lik��tvu��� = 𝑃(𝑿	|𝑉, {𝜙"})	
	
where	the	model	is	the	unknown	volume	𝑉	and	the	set	of	unknown	orientation	angles	{𝜙"}.	
X	represents	the	entire	set	of	experimental	images.	Relion	is	agnostic	about	the	orientation	
angles,	and	instead	optimizes	the	simple	likelihood	
	
	 	 	 Lik�tu�r� = 𝑃(𝑉|𝑿).	
	
This	has	the	important	advantage	that	as	the	number	of	experimental	images	grows,	the	
number	of	parameters	to	be	estimated	does	not;	the	goal	is	only	to	assign	the	voxel	values	
in	V.		The	way	this	is	done	is	by	taking	an	integral	over	all	the	orientation	angles,	
	
	 	 	 Lik�tu�r� = ∫𝑃(𝑉|𝑿, {𝜙"}) × 𝑃({𝜙"}|𝑿)𝑑𝜙" 	,	 	
	
where	this	is	actually	a	huge	multiple	integral	over	each	of	the	orientation	angles	for	each	
particle.	
	
To	understand	the	Relion	algorithm	we	start	with	an	explicit	model	for	the	experimental	
images.		(Here	again	we	are	working	in	the	Fourier	domain.)		We	say	that	
	
	 	 	 𝑋" = 𝐶"𝑃z2𝑉 + 𝑁" 		 	 	 	 (16)	
	
That	is,	a	given	particle	image	is	a	CTF-modified	slice	of	the	true	Fourier	volume	V,	with	the	
instance	of	random	noise	𝑁"	added.		We	specify	that	the	noise	has	variance	𝜎8.				
	
We	need	to	compute	the	probability	of	the	orientations	
𝑃({𝜙"}|𝑿), which	for	an	individual	image	𝑋 	we¡ll	call	Γ"(𝜙).	We′ll	use	reference	images		
of	the	form	𝐶"𝑃z𝑉(H), each	one	of	which	is	a		
slice	of	our	initial	Fourier	volume	𝑉(H)	at	orientation	𝜙	that	is	
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	filtered	by	the	CTF.		The	probability	that	a	particle	image	𝑋" 	matches	that	reference	is	given	
by	

	

	Γ¦"(𝜙) =
1

(2𝜋𝜎8)p/8 𝑒
U©ª2U«2p¬­(^)©

6
/8X6 	

	
We	obtain	our	desired	probability	of	𝜙	given	the	image	𝑋" 	by	normalizing	it,	

	

Γ"(𝜙) =
Γ¦"(𝜙)

∫ Γ¦"(𝜙)𝑑𝜙
	

	 	 	 	 	 	 	 	 	 (17)	
Computing	this	function	is	called	the	“expectation	step”	of	the	algorithm.		Evaluating	
Γ"(𝜙)for	each	particle	image	is	very	costly, as	it	has	to	be	evaluated	over	all	values	of	the	five −
dimensional	𝜙	variable	(three	Euler	angles	of	orientation	and	two	translational	coordinates);	
	however	in	Relion	the	computation	has	been	highly	optimized. Part	of	the	optimization	is		
determining, for	each	particle	image, the	(usually	quite	limited)	domain	of	𝜙	for	which	Γ"(𝜙)	
is	significant; 	outside	this	domain	Γ"	is	simply	set	to	zero.		Another	optimization	has	been	the		
use	of	graphics	processors	(GPUs)	to	perform	operations	on	many	pixels	or	voxels	in	parallel;	
	this	is	particularly	useful	in	evaluating	quantities	such	as	the	slice	extraction	𝑃z𝑉.	
	
The	“maximization”	step	of	the	E-M	algorithm	is	complicated	to	derive,	so	I’ll	just	present	
the	result.		A	refined	Fourier	volume,	obtained	from	an	iteration	starting	with	an	initial	
estimate	of	the	volume	𝑉(H),	is	found	as	 	
	 	 	 	

𝑉(8) =
∑ ∫Γ"(𝜙)𝑃z�𝐶"𝑋"𝑑𝜙" 	
𝜎8
𝑇𝜏8 + ∑ ∫Γ"(𝜙)𝑃z�𝐶"8𝑑𝜙"

	

	 	 	 	 	 	 	 	 	 (18)	
with	Γ" 	computed	on	the	basis	of	𝑉(H).	This	is	called	the	“maximization	step”	of	Relion’s	
refinement.		The	reconstruction	is	quite	similar	to	the	Frealign	refinement	step,	with	two	
differences.		First,	an	integral	over	all	possible	orientations	and	translations	
𝜙	has	been	added. If	for	image	𝑋"	there	is	clearly	a	best	value	of	𝜙, then	Γ"	will	be	like	a		
delta	function, and	eqn. (18)	will	be	basically	the	same	as	the	Frealign	step, eqn. (15).			
The	second	difference	is	that	the	Wiener	constant	is	determined	explicitly	from	the	noise		
variance	and	an	estimate	𝜏8	of	the	amount	of	signal	contained	in	the	reconstructed	volume4.		
The	value	𝜏8	is	actually	multiplied	by	an	ad	hoc	constant	T,	typically	set	by	the	user	to	
values	between	2	and	4,	to	accelerate	convergence.5	
                                                
4 The	inclusion	of	the	Wiener	constant	is	actually	dictated	by	a	prior	probability	function	in	the	MAP	
framework;	Scheres	chose	a	Gaussian	prior	which	constrains	V	to	be	well-behaved. 
5 Actually	in	Relion	the	variables	𝜎8	and	𝜏8	are	taken	to	be	functions	of	spatial	frequency.		(They	are	
1D	functions	of	the	magnitude	of	the	spatial	frequency.)		This	allows	the	program	to	take	into	
account	noise	that	is	not	statistically	independent	from	pixel	to	pixel,	and	also	to	take	into	account	
the	fact	that	the	signal	in	a	reconstructed	volume	decays	at	high	resolutions.	Therefore	𝜎8	is	
actually	the	power	spectrum	of	the	noise,	and	an	estimate	of	it	is	updated	in	each	iteration	of	the	
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To	work	towards	the	final	3D	map,	one	takes	
𝑉(8)	from	the	maximization	step	and	goes	back	to	the	expectation	step	to	compute	a		
new	set	of	the	Γ"	functions.		Then	another	maximization	step	yields	𝑉(»),	and	this	process	is	
repeated	perhaps	15-25	times,	until	a	stable	result	is	obtained.	
	
3D	classification	in	RELION	
	
A	big	advantage	of	the	maximum-likelihood	framework	is	that	it	can	be	readily	(and	
rigorously)	extended	to	include	variability	in	the	particle	images	beyond	just	the	
orientations.		For	example,	suppose	that	we	are	imaging	a	heterogeneous	mixture	of	K	
distinct	kinds	of	macromolecular	particles.		We	model	this	by	saying	that	a	given	particle	
image	might	arise	from	the	particular	3D	Fourier	volume	𝑉K ,	
		
	 	 	 𝑋" = 𝐶"𝑃z2𝑉K2 + 𝑁" 		 	 	 	 (19)	
	
And	we	can	extend	the	latent	probability	function	also	to	include	the	probability	that	an	
image	came	from	the	kth	volume	at	the	orientation	
𝜙.		We’ll	call	this	Γ"(𝜙, 𝑘), and	it	is	calculated	on	the	basis	of	initial	volumes	𝑉H

(H), 𝑉8
(H) …𝑉h

(H).	
Then	we	can	refine	each	of	the	volumes	in	the	maximization	step	by	
	

𝑉K
(8) =

∑ ∫Γ"(𝜙, 𝑘)𝑃z�𝐶"𝑋"𝑑𝜙" 	
𝜎8
𝑇𝜏K8

+ ∑ ∑ ∫ Γ"(𝜙, 𝑘)𝑃z�𝐶"8𝑑𝜙K"

	

	 	 	 	 	 	 	 	 	 (20)	
	
This	process	is	called	3D	classification,	because	in	the	end	we	can	look	at	Γ" 	and	answer	the	
question,	to	which	of	the	K	volumes	did	image	i	contribute	the	most?		We	can	then	assign	
that	image	to	that	“class”.		Notice	that	this	sort	of	assignment	is	actually	not	rigorously	
correct,	as	depending	on	the	latent	probability	function	a	given	image	contributes	to	all	of	
the	volumes.		But	at	the	end	of	the	iterations	there	often	is	a	clearly	higher	latent	
probability	for	one	volume	than	the	others.	
	
2D	classification	in	RELION	
	
Relion	can	also	do	2D	classification,	by	almost	exactly	the	same	process	as	3D	classification.		
We	can	describe	how	it’s	done	with	the	same	equations	too,	we	just	have	to	re-define	some	
variables.	
	
	
	
	
                                                
refinement.		In	Relion’s	auto-refine	routine,	𝜏8	is	determined	from	the	Fourier	shell	correlation	
(FSC)	which	gives	a	rigorous	estimate	of	the	actual	signal	in	the	reconstructed	volume. 
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Quantity Meaning	in	3D	classification Meaning	in	2D	classification 

𝑉K Class	volume Class	average	image 

𝜙 3	Euler	angles	of	orientation	+	
2	translations 

1	angle	of	rotation	+	2	trans-
lations 

𝑃z Projection	operator	3D	→	2D Image	rotation	and	shift 

𝑃z� Back-projection	operator	
2D→3D 

Reverse	shift	and	rotation	

	
In	this	case	eqn.	(19)	represents	the	formation	of	an	image	based	on	one	of	the	K	
underlying	object	images	𝑉K ,	and	eqn.	(20)	shows	how	we	can	improve	the	estimate	of	that	
class	average.	So	essentially	the	same	algorithm	can	be	applied	to	2D	classification	of	
images,	with	a	big	advantage	that	CTF	correction	is	also	applied.	
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Estimating	the	resolution:	the	Fourier	Shell	Correlation	
	
A	problem	with	single-particle	reconstruction	is	that	there	is	no	objective	way	to	judge	the	
quality	of	raw	data.		The	visibility	of	particles	in	a	micrograph	gives	an	idea	of	image	quality	
as	far	as	the	signal-to-noise	ratio	(SNR)	is	concerned.		Generally	the	SNR	increases	as	ice	
thickness	decreases,	but	at	extremely	low	ice	thickness	the	particles	look	great	but	might	
be	deformed	by	mechanical	forces	or	give	particularly	large	signal	as	fixed	charges	on	
“freeze-dried”	particles	give	rise	to	large	electrostatic	potentials.	
	
So	if	we	make	a	3D	reconstruction	from	very	noisy	single-particle	images,	how	will	we	
know	its	resolution?		The	generally	accepted	approach	is	to	compute	the	Fourier	shell	
correlation	(FSC)	of	two	Fourier	volumes,	

	

FSC(𝑓À) =
∑ 𝑉H(𝐟)𝑉8∗(𝐟)𝐟∈ÃÄ

∑ ‖𝑉H(𝐟)‖‖𝑉8(𝐟)‖𝐟∈ÃÄ
	

	
which	is	simply	a	correlation	
coefficient	between	the	
Fourier	voxel	values	on	a	shell	
a	distance	𝑓À	from	the	origins	
of	the	Fourier	volumes.		
Below	is	an	example	of	an	FSC	
curve	for	a	reconstruction	of	a	
membrane	protein.		It	is	the	
FSC	computed	between	two	
independent	reconstructions,	
each	made	from	12000	
particles	from	a	24000	
particle	dataset.		It	is	clear	
that	the	correlation	decreases	
from	unity	at	low	spatial	
frequencies,	e.g.	.05	Å-1	which	
corresponds	to	20	Å	

resolution,	down	to	around	zero	at	about	6	Å	resolution.		But	what	is	the	resolution	of	the	
map?		In	an	important	paper,	Rosenthal	and	Henderson	(2003)	showed	that	a	correlation	
coefficient	of	0.143	between	two	reconstructions	from	half-datasets	should	be	the	same	as	
a	correlation	of	0.5	between	the	full	dataset	and	a	noiseless	“perfect”	map,	and	this	
corresponds	to	the	figure	of	merit	m=0.5	or	a	weighted	phase	residual	of	60°	in	X-ray	
crystallography.		By	this	criterion	the	quality	of	a	cryo-EM	map	at	the	resolution	that	gives	
FSC=0.143	is	roughly	the	same	as	the	quality	of	an	X-ray	map	at	that	resolution.	
	
Another	question	that	arises	is,	how	independent	must	be	the	two	reconstructions	from	
half-datasets?		Until	recently	it	was	thought	that	it	is	sufficient	to	separate	the	two	
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reconstructions	only	during	the	last	iteration	of	refinement.		It	became	clear,	however,	that	
this	gave	excessive	correlations	due	to	the	two	reconstructions	having	the	same	starting	
model.		In	the	past	few	years	the	standard	in	the	field	has	become	the	“gold	standard	FSC”,	
where	the	two	reconstructions	are	started	from	an	initial	model	having	no	signal	beyond	
say	40	Å	resolution,	and	are	kept	independent	through	the	entire	refinement	process.		
Except	for	possible	artifacts	from	masks,	the	resulting	volumes	should	have	nothing	in	
common	at	resolutions	better	than	40	Å,	and	all	correlations	are	due	to	data,	not	artifacts.			
	
Another	way	to	check	for	artefactual	correlations	is	by	high-frequency	phase	
randomization.		The	idea	is	to	take	the	entire	set	of	single-particle	images,	and	randomize	
the	phases	of	every	Fourier	component	higher	than	a	particular	frequency.		If	there	is	a	
correlation	between	two	reconstructions	from	data	processed	in	this	way,	it	must	be	an	
artifact.		The	red	curve	in	the	FSC	plot	above	is	with	phases	randomized	beyond	15	Å.	
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Appendix 1. Correlation and convolution 
 
If	we	were	dealing	with	a	continuous	image	𝑚(𝑥, 𝑦)	and	reference	𝑟"(𝑥, 𝑦)	the	cross-
correlation	would	be	written	as	
	
	 	 	 	 𝑐"(𝑥, 𝑦) = ∫ 𝑚(𝑥 + 𝑠, 𝑦 + 𝑡)𝑟"(𝑠, 𝑡)

Å
UÅ 𝑑𝑠	𝑑𝑡		 (A1)	

	
Or,	compactly,	people	write	
	
	 	 	 	 𝑐" = 𝑚⨂𝑟	
	
Doesn’t	the	correlation	integral	(4)	look	a	whole	lot	like	a	two-dimensional	convolution?	
For	example	this	is	a	convolution:	
	
	 	 	 	 𝑔(𝑥, 𝑦) = ∬ 𝑀(𝑥 − 𝑠, 𝑦 − 𝑡)𝑅"(𝑠, 𝑡)𝑑𝑠	𝑑𝑡

Å
UÅ 	
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Like	convolution,	the	calculation	of	the	correlation	can	be	vastly	accelerated	using	the	
Fourier	transform.	If	𝑀	and	𝑅" 	are	the	FTs	of	𝑚	and	𝑟" ,	then	the	FT	of	the	correlation	𝑐" 	is	
given	by	just	the	product	
	 	 	 	 𝐶" = 𝑀𝑅∗	 	 	 	 	 	 	 (A2)	
	
Where	the	star	indicates	the	complex	conjugate.	The	conjugate	(just	flipping	the	sign	of	the	
imaginary	part)	of	a	function	in	the	Fourier	domain	corresponds	to	taking	a	reflection	in	
the	spatial	domain,	i.e.	reversing	the	sign	of	𝑠	and	𝑡	in	this	case.	
	
In	practice	we	have	micrographs	and	references	that	have	finite	numbers	of	pixels,	and	we	
have	to	compute	sums	rather	than	integrals,	but	the	idea	is	the	same.		 


