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Sampling, 3D Reconstruction and CTF “Correction” 
 
The Sampling Theorem 
 
Up to now we have been talking about Fourier transforms in the platonic ideal of continuous 
functions on the entire fields of all real (or complex) numbers in 1D, 2D or 3D. But we will be 
acquiring images with cameras having a limited number of pixels, and will be creating 3D 
density maps with a limited number of voxels. How can we know that these discrete 
representations will be accurate ones? The plot below shows an example of a problem. Two 
cosine waves with different frequencies (u=0.45 u=0.55) yield the same sample points when 
sampled at unit intervals. This is a phenomenon called “aliasing”. 
 

 
 
To formally understand sampling, we take a signal as a function of x and multiply it by shah(x) 
(Fig. 1A below). From the convolution theorem we know that its FT will be the FT of the 
original function, convolved with a shah function (Fig. 1B) so it will be periodic in u. If we 
isolate one copy of the periodic FT (using rect(u) as shown in gray), then we get the FT in part C. 
Transforming back to real space we have the reconstructed signal in part D. The trick, it turns 

out, is the multiplication of the FT of the samples by rect(u). This of course corresponds to 
convolving the samples with the FT of rect, which is the sinc function. So to get from A to C in 
the figure we could also have convolved with sinc(x). 
 
The multiplication by rect(u) limits the frequencies to u values between  -½ and ½. If the original 
signal had contained Fourier components with frequencies outside this range, we would have had 
a problem, as these components would have overlapped in the periodic function in Fig. 1B. 
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Here’s another example. Panels A-C demonstrate the reconstruction of a “band-limited” signal, 
that is a signal with no Fourier components beyond +1/2 in magnitude, and reconstruction is 
perfect. (In panel C I’ve also plotted the sinc(x) interpolation function for one of the points.) If 
however the signal is not limited to that range, reconstruction is not correct. 
 

 
In general, the sampling theorem says that, if a signal is to be sampled discretely at some 
frequency 𝑓", the signal is completely represented by the samples if it contains no components at 
frequencies larger than 𝑓"/2. This value 𝑓"/2 is called the Nyquist frequency, named after Harry 
Nyquist (Yale PhD in physics, 1917) who discovered the sampling theorem. 
 
2D Reconstruction 
 
We’ll first consider a 2D tomography problem for simplicity.  A hospital CAT (computer-
assisted tomography) scanner performs 2D reconstruction of slices of your body through the 
measurement of 1D X-ray projections.  From these are computed a 2D tomogram for each slice. 
 
A projection g(x) is taken of a 2D object (say a section of a patient’s body): 
 

 
 
The projection g(x) is related to the 2D density distribution f(x,y) of the object through the 
projection integral 
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      (16) 
 
where the integral is taken over the full y extent of the object. 
 

Now suppose that we know the Fourier transform of the density distribution, which we 
will call F(u,v).  It can be written as 

 
    (17) 

 
If we evaluate it at v=0, we get 
 

  

 
which is just the (1D) Fourier transform of the projection g(x), 
 
 𝐹(𝑢, 0) = ∫𝑔(𝑥)𝑒012345𝑑𝑥     (18) 
 
Thus the projection of an object is a section of its Fourier transform.  In pictures: 
 

 
 
This, plus the rotation property of Fourier transforms, is all we are going to need.  Recall that if 
we rotate a 2D function, its FT rotates similarly.  This means that if we rotate the object and then 
collect a projection, we will have obtained a different section of the 2D FT.  If we collect enough 
such projections, we can fill in the whole FT.  Then by transforming back, we obtain the original 
density map of the object. 
 
This procedure is how computed tomography works, and is also how 3D molecular structures are 
obtained.  In the latter case, the 3D version of the projection theorem says, a 2D projection is 
corresponds to a plane (a central section) of the 3D Fourier transform. 
 
To make a 3D reconstruction from 2D projections of an object, you compute the FT of each 
projection image, which gives you a set of values in a plane.  Then you “insert” it into a 3D 

    g(x) = f (x ,y)dy∫

    F(u, v) = f(x, y)e−i2π (ux+ v y)dxdy∫∫

    

F(u, 0) = f (x ,y)e−i2π (ux )dxdy∫∫
= f (x ,y)dy∫[ ]∫ e−i2πuxdx
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Fourier volume; that is, you modify the value at each voxel that intersects the plane, so that it 
matches the value on the plane.  Clearly to do this you need to know at what angle the plane is to 
be “inserted”.  That is easy in the case of electron tomography, but harder in the case of single-
particle reconstruction. 
 
Electron tomography 
 
Electron tomography (ET) gives you a 3D density map of a micron-sized region of a specimen.  
The most sophisticated version is cryo-ET, which images a specimen fast-frozen in vitreous ice.  
The quality of ET data is limited by electron doses.  For cryo-ET, people give total electron 
doses up to about 100 e-/Å2 which is way too much for high-resolution (better than 1nm) 
imaging, but works okay for the usual ~5 nm resolution of ET.  One accumulates a tilt series of 
micrographs, obtained for example at tilts every 2o from -60o to +60o, with an exposure of 1-1.5 
e-/Å2 at each tilt value.  It would be much better to approach 90o but that isn’t practical: one 
would be looking through too thick a specimen, and one starts running into shadows from the 
grid bars and the specimen holder as well. 
 
The limited range of angles means that there is a missing wedge in Fourier space, where the 
missing planes would have been inserted.  The result is that the resolution of the reconstruction is 
different in different directions.  In the figure below, a flagellum (panel a) is imaged by rotating 
the specimen about a horizontal axis in the plane of this page.  The resulting tomograms (b) show 
good resolution in the horizontal direction, but the top and bottom of each microtubule’s cross 
section is weak due to the missing wedge problem.  It is possible to accumulate sub-tomogram 
averages of objects inside the tomogram.  If the objects are present in various orientations within 
the sample, the missing wedge can be filled in (panel c). 
 

 
Figure 11.  Effects of radiation damage and missing wedge artefacts on electron cryo-tomography images. (a) Two 
images from one series of tomographic acquisition. Top: ice-embedded flagellum tilted by 30°. Bottom: the same 
flagella without tilt. A gold label is shown by arrows. (b) Cross section of Chlamydomonas flagella with the membrane 
removed (left) and intact (right). The membrane is shown by arrows. Missing wedge artefacts generate non-isotropic 
density distributions. (c) Longitudinal (parallel to the microtubule) sections of averaged tomograms (ten particles) 
along microtubule doublets with high and low doses of electron beam. The averaged image with a high electron dose 
shows individual dynein molecules (arrows) even with ten particles. (d) Vertical sections of averaged tomograms 
(~1000 particles) with high and low doses. By averaging many particles obtained under a low-dose condition better 
resolution is obtained. Averaging among nine doublets generates isotropic microtubules (even and round-shaped). (a) 
Scale bar = 250 nm. (b)–(d) Scale bar = 50 nm.  K. H. Bui, G. Pigino and T. Ishikawa, J. Synchrotron Rad. (2011). 18, 
2-5. 
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Electron tomograms generally show 
strong signals at edges of objects, 
but do not properly reflect the 
interiors of areas of high or low 
density.  This is because of the CTF 
for defocus imaging, which is very 
small at low frequencies.  The 
situation can be helped somewhat 
by using a large defocus value (e.g. 
10 µm) for low-resolution work.  
On the other hand, by using smaller 
defocus and sub-tomogram 
averaging it has been possible to 
use ET to obtain surprisingly good 
3D structures of macromolecules.   
 
 
More	about	the	contrast	transfer	function	
 
Envelope function 
 
When you use a high defocus value to improve the visibility of your protein, there is a cost in the 
resolution of the images. It can be difficult to undo all the rapid oscillations in the CTF, for one 
thing.  But then there is a physical limitation that is quite serious.  A defocus of 1 µm means that 
you are focused a very long distance, (some 400,000 wavelengths!) away from the specimen.  
Now suppose that the effective electron source size is such that some of the incident electrons 
follow a slightly different path than others.  A typical situation in a microscope with a tungsten 
filament source would be that the incident electrons follow paths that differ in angle by 10–3 
radians.  These different paths can blur out the image of high-resolution features at large 
distances from the specimen.  The variation in electron path is called spatial incoherence. 
 
For example, suppose the specimen has a periodicity d = 1nm.  At our defocus of 1 µm we are 
looking for differences in intensity with this same periodicity.  But the periodic pattern imaged 
by electrons traveling at an angle of 10–3 radians will be shifted by 10–3 x 1µm = 1nm compared 
to the pattern imaged with zero angle (traveling along the z axis).  Thus if the paths of the 
incident electrons have random angles in this range, the 1 nm pattern will be completely washed 
out!  This is why the field-emission electron gun is so important: it allows the effective electron 
source size to be so small that angular spreads of 10–5 or 10–6 radians are attainable, which in 
turn should allow high resolution at high defocus values. 
 
There is another process that increases angular spread and therefore decreases spatial coherence, 
called “charging”.  When an incident electron is inelastically scattered, it transfers some of its 
energy to an electron of one of the atoms in the specimen, typically causing it to be ejected from 
the specimen.  The result is that the specimen starts to take on a positive charge.  This charge, if 
it is inhomogeneous or if the sample is tilted, causes a deflection of other incident electrons.  
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This deflection has the same effect as a large source size: it causes a variation in the electron path 
angle, and washes out fine details in the image. 
 
These mechanisms both have the effect of blurring the image.  They are typically modeled as a 
Gaussian decay of the CTF at high spatial frequencies.  When we include this term, the CTF 
looks like 
 

   (2.1) 
 
where  

 

 
and B has units of nm2 or Å2 and is called the “B-factor” or “envelope factor”.  The best cryo-
EM images have B values of 20-80 Å2, but even these values are not so good.  At 60 Å2 spatial 
frequencies of 4 Å are attenuated to 1/e of their original amplitude, and the power in the signal 
(the square of the amplitude) is reduced to about 1/10 of the original value.  Higher spatial 
frequencies are attenuated even more.  
 
Effect of CTF at high resolution 
The figure below shows the effect of the CTF on a high-resolution image.  The image in this case 
is a projection of the TRPV1 ion channel map.  The CTF-modified image, as obtained with 2µm 
of defocus, looks inverted in contrast (due to the CTF being negative at low frequencies) and 
considerably distorted. Especially interesting is the dispersion of high-frequency information 
away from the center of the particle image.  This results from the diffraction mechanism that we 
considered in the first lecture, and shows that, especially when a small particle is being imaged, 
ample space must be left around the particle to include the high-frequency fringes. In this 
simulation I also included some astigmatism, which can be seen from the elliptical rings in the 
CTF.  This phenomenon arises from, in effect, a different defocus value holds for different 
orientations. 
 
 

CTF = sin(χ −α )e−Bs
2 /4

χ = −πλδ f 2 + π
2
Csλ

3 f 4
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CTF “Correction” 
 
How can we un-distort images that have been severely distorted by the effects of high defocus?  
It turns out that the worst part is the alternating polarity of contrast transfer.  We can fix this by 
taking the Fourier transform of the image, multiplying that by the sign of the CTF, and 
transforming back.  Here is what the CTF 
and its sign look like in two dimensions, 
for = 1µm: 
 
This operation, called “phase flipping”, 
goes a long way toward making a high-
defocus image interpretable, but it clearly 
isn’t perfect. It reduces the worst part of 
the dispersion, but leaves an undershoot 
(white border) around the particle and does 
not eliminate the fringes entirely. 
 
So how do you “correct” an acquired image for the CTF?  The answer is that you can’t.  There is 
information missing at frequencies where the CTF is zero; and near the zeroes, where there is 
information, it is nevertheless often unusable because its amplitude is so low.  There are tricks 
that you can do, however. 
 

1. Phase flipping, as we’ve just discussed. 
2. Combine data from multiple images, obtained at various defocus values.  This way the 

zeros from one image are filled in by data from others.  This is the most powerful 

δ

Figure 1.  CTF and sgn(CTF) 

Effect of CTF on a high-resolution image.  Top row are real space, lower row are corresponding Fourier 
transforms.  Top left is a projection of the 3D map for the TRPV1 ion channel (Liao…Cheng, Nature 
2013); the image is 310Å square.  The simulated image, filtered according to the CTF for a defocus of 2 
µm, is shown top right.  The CTF also reflects 0.2 µm of astigmatism. 
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method, which is used in electron crystallography and advanced single-particle 
reconstruction.  We’ll be talking about this strategy later. 

3. Perform an “inverse filtering” operation, for example with a Wiener filter.  The Wiener 
filter consists of a set of Fourier weights that are designed to correct for the shape and 
polarity of the CTF function without unduly magnifying the noise near the zeros.  It is 
optimum in the sense of giving a minimum squared error in reconstructing the original 
image. 

 

Defocus-contrast images at different defocus values (top row) are “corrected” by phase-flipping 
(second row) or a Wiener filter (third row).  

 
The Wiener filter was discovered by Norbert Wiener1 (1912 PhD in mathematics at Harvard, at 
age 17). In our image processing it serves as a sort of deconvolution device.  Let’s model the 
imaging system in the Fourier domain.  We start with the original object  and pass it 
through a filter (the CTF) with frequency response  to yield the image  
 

𝑋(𝑢, 𝑣) = 𝑂(𝑢, 𝑣)𝐶(𝑢, 𝑣) + noise  (2.2) 

                                                
1 From Wikipedia: The Wiener filter is a filter proposed by Wiener during the 1940s and published in 1942 as a 
classified document. Its purpose is to reduce the amount of noise present in a signal by comparison with an estimate 
of the desired noiseless signal. Wiener developed the filter at the Radiation Laboratory at MIT to predict the position 
of German bombers from radar reflections.... The unmanned V1's were particularly easy to model, and on a good 
day, American guns fitted with Wiener filters would shoot down 99 out of 100 V1's as they entered Britain from the 
English channel, on their way to London. 
 

O(u,v)
C(u,v)
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So, why don’t we just do the following to recover the original object’s structure: 
 

𝑂A(𝑢, 𝑣) =
𝑋(𝑢, 𝑣)
𝐶(𝑢, 𝑣) 	? 

 
We can’t because there are zeros in C. 
 
So, the next best thing (which gives a least-squared-error solution) is to instead compute 
  

𝑂A =
𝑋𝐶

𝑤 + 𝐶2 
      (2.3) 

where the positive constant w keeps the result from blowing up at zeros in C.  Optimally, w is 
chosen to be the inverse of the signal-to-noise ratio. 
 
Determining the CTF 
 
How can we know the exact value of defocus and other parameters, to be able to accurately 
model and correct for the CTF? Here is how it works in practice.  Below left is part of an image, 
acquired with the CCD camera on our old F20 microscope.  On the right is the power spectrum, 
obtained as the magnitude squared of the FT of the image on the left.  The dark rings show where 
the zeros in the CTF are.  The spectrum doesn’t go to zero, but goes to minima set by the 
magnitude of the background shot noise.  The positive and negative lobes of the CTF are not 
distinguished, due to the squaring operation. 

 
You can fit the pattern of rings (called Thon rings) to very precisely determine the defocus and 
also get an idea of the B factor and other parameters of the CTF.   
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Below is the display of a CTF-fitting program.  The circularly averaged power spectrum (lower 
right, blue trace) is fitted by the CTF2 (orange trace).  The fitting is actually performed in 2D, as 

shown in the images in the bottom row of the figure. Once the defocus (here called Δ𝑧) is 
determined by fitting, one can reconstruct the CTF as shown left half of the bottom images. 
 
If the Thon rings are not circular, you know that you have astigmatism.  For high-resolution 
work it’s essential that the CTF model includes astigmatism, so a CTF-fitting program will give 
you two defocus values, representing the major and minor axes of the elliptical rings, and also 
the astigmatism angle. Delta-defocus in µm, shown in upper right, is a measure of astigmatism 
and is very close to zero in this case. 
 
 


