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Modeling an image

Deconvolution:
 ??Ã = X/C

A C CA

X = CA + N

, B=100Å2
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How to undo the CTF effects?

1.  Phase flipping 

Ã = sgn(C)X

, B=100Å2
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How to undo the CTF effects?

1.  Phase flipping 

 

2. Wiener filter 

 

Ã = sgn(C)X

Ã =
CX

C2 + k

, B=100Å2
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How to undo the CTF effects in noisy images?

3. Wiener from multiple images 

 Ã =
∑N

i CiXi

k + ∑N
i C2

i

 k = 1/SNR

=
|N |2

|A |2
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Notation

Two notations for a single pixel in the image :

        —the   pixel (out of  pixels total)


  —the pixel at position 

X
Xj jth J

X(x, y) x, y
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Ways to compare images

Define the “reference”

R = CA

Squared difference





[note that

 ] 


Correlation





Correlation coefficient


(X − R)2 = ∑
j

(Xj − Rj)2

(X − R)2 = X2 + R2 − 2X ⋅ R

Cor = X ⋅ R

CC =
X ⋅ R

|X | |R |

Cross-correlation function




                      


[Correlation is like convolution.

The FT pair is:   ] 


Cor(x, y) = X ⊗ R
= ∑

s,t

X(s, t)R(x + s, y + t)

g ⊗ h → GH*
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Example: cross-correlation particle picker

Image Best-matching references

One of 72 
References

Particle location

Cross-correlation
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Probabilities, another way to compare images

w

XjRj

P(Xj |Rj)




Probability of a pixel value:





Probability of observing an image that

comes from :





X = R + N

P(Xj |Rj) =
w

2πσ2
e−(Xj−Rj)2/2σ2

R

P(X |R) =
wJ

(2πσ2)J/2
e−(X−R)2/2σ2  is the finesse of the pixel 

intensity measurements. We’ll 
ignore it (set it to 1).

w

1

1
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Probabilities, another way to compare images

A projection





Probability of observing an image





Probability of a projection direction





A = PϕV

P(X |V, ϕ) = (2πσ2)−J/2 e−(X−CPϕV)/2σ2

P(ϕ |X, V) =
P(X |V, ϕ)P(ϕ)

∫ P(X |V, ϕ)P(ϕ)dϕ
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Determining the orientation angles: example from the TRPV1 dataset

Projection

Simulated image

Projection

Simulated image

1/4 of a micrograph - empiar.org/10005 One particle image
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Probability of orientations P(ϕ |X, V)
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Probability of orientations P(ϕ |X, V)
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FREALIGN (N. Grigorieff) is like a Wiener filter

A Frealign iteration, refining  to , 
consists of two steps:


1. Find the projection image    
that maximizes the correlation coefficient for 
each image ,


. 


2. Update the volume according to 





V(n) V(n+1)

Ri = CiPϕi
V(n)

Xi

CC =
Xi ⋅ Ri

|Xi | |Ri |

V(n+1) =
∑N

i PT
ϕi

CiXi

k + ∑N
i PT

ϕi
C2

i

Notes


1.  is the CTF corresponding to the 

image .


2. The projection operator  also 

includes translations.  So  
consists of five variables: 

.


3.  is the corresponding back 

projection operator. It operates on 
a 2D image and returns a 3D 
volume. In Fourier space it yields a 
volume that is all zeros except for 
values along a slice.

Ci

Xi

Pϕ

ϕ

ϕ = {α, β, γ, tx, ty}
PT

ϕi
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Probabilities and Likelihoods

Let  be our “stack” of particle images. We’d like to 
find the best 3D volume consistent with these data, say maximizing

                                    .


According to Bayes’ theorem,


                         .


1.  doesn’t depend on  so we can ignore it. 

2.  is something we can calculate. It’s called the likelihood.

3.  is called the prior probability. 
4.The product  is called the posterior probability.

X = {X1 . . XN}

P(V |X)

P(V |X) = P(X |V)
P(V)
P(X)

P(X) V
P(X |V)
P(V)

P(X |V) P(V)

prior      Experiment      posterior 
 

→ →
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We know how to compute the likelihood

We already know that


                  


To get the likelihood for one image we just integrate over all the ’s:


                  


To get the likelihood for the whole dataset we compute the product over 
all the images,


                  ,


or for numerical sanity, we compute the log likelihood,


                  .

P(X |V, ϕ) = (2πσ2)−J/2 e−(X−CPϕV)/2σ2

ϕ

P(X |V) = ∫ P(X |V, ϕ) P(ϕ) dϕ

P(X |V) =
N

∏
i

∫ P(Xi |V, ϕ) P(ϕ) dϕ

L =
N

∑
i

ln (∫ P(Xi |V, ϕ) P(ϕ) dϕ)
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Relion and CryoSPARC both do this to estimate V




               .

V = arg max
V [ln P(V) +

N

∑
i

ln (∫ P(Xi |V, ϕ) P(ϕ) dϕ)]
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It’s not too hard using the E-M algorithm

The Expectation-Maximization (E-M) algorithm has this iteration, 
guaranteed to increase the likelihood:


            


where


             


                         


Finally, recall,


              .


…Relion’s “E step” is basically the evaluation of  for each image


V(n+1) =
∑i ∫ Γ(n)

i (ϕ)PT
ϕCiXi dϕ

σ2

Tτ2 + ∑i ∫ Γ(n)
i (ϕ)PT

ϕC2
i dϕ

Γ(n)
i (ϕ) = P(ϕ |Xi, V(n))

=
P(Xi |V(n), ϕ)P(ϕ)

∫ P(Xi |V(n), ϕ)P(ϕ) dϕ

P(Xi |V(n), ϕ) = (2πσ2)−J/2 e−(Xi−CPϕV(n))/2σ2

Γ(ϕ)
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3D Classification

To estimate multiple volumes, we start with the model that a given 
image results from one of  different volumes.





Then to estimate those volumes, we expand the  function to include 
the probability that an image comes from volume . Then the update 
of each volume becomes





               .

K
Xi = CiPϕVki

+ Ni, k = 1 . . K

Γ
k

V(n+1)
k =

∑i ∫ Γ(n)
i (k, ϕ)PT

ϕCiXi dϕ
σ2

Tτ2 + ∑i ∫ Γ(n)
i (k, ϕ)PT

ϕC2
i dϕ
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2D Classification uses the same algorithm

Quan%ty Meaning	in	3D	classifica%on Meaning	in	2D	classifica%on

Class	volume Class	average	image

3	Euler	angles	of	orienta3on	+	2	transla3ons 1	angle	of	rota3on	+	2	transla3ons

Projec3on	operator	3D						2D Image	rota3on	and	shi?

Back-projec3on	operator	2D						3D Reverse	shi?	and	rota3on→
→

Vk

ϕ

Pϕ

PT
ϕ
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