Cryo-EM Principles

Single-Particle Reconstruction

Fred Sigworth Yale University

Modeling an image

How to undo the CTF effects?

1. Phase flipping

$$\tilde{A} = \operatorname{sgn}(C)X$$

How to undo the CTF effects?

1. Phase flipping

$$\tilde{A} = \operatorname{sgn}(C)X$$

2. Wiener filter

$$\tilde{A} = \frac{CX}{C^2 + k}$$

How to undo the CTF effects in noisy images?

3. Wiener from multiple images

$$\tilde{A} = \frac{\sum_{i}^{N} C_{i} X_{i}}{k + \sum_{i}^{N} C_{i}^{2}} \qquad \qquad k = 1/\text{SNR}$$
$$= \frac{|N|^{2}}{|A|^{2}}$$

Notation

Two notations for a single pixel in the image *X*: X_j —the j^{th} pixel (out of *J* pixels total) X(x, y) —the pixel at position *x*, *y*

Ways to compare images

Cross-correlation function

$$Cor(x, y) = X \otimes R$$

= $\sum_{s,t} X(s, t)R(x + s, y + t)$

[Correlation is like convolution. The FT pair is: $g \otimes h \to GH^*$]

Example: cross-correlation particle picker

One of 72 References

Particle location

Probabilities, another way to compare images

$$X = R + N$$

Probability of a pixel value: $P(X_j | R_j) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_j - R_j)^2/2\sigma^2}$

Probability of observing an image that comes from R:

$$P(X | R) = \frac{\chi^{3}}{(2\pi\sigma^{2})^{J/2}} e^{-(X-R)^{2}/2\sigma^{2}}$$

Probabilities, another way to compare images

A projection

$$A = \mathbf{P}_{\phi} V$$

Probability of observing an image $P(X \mid V, \phi) = (2\pi\sigma^2)^{-J/2} e^{-(X - \mathbf{CP}_{\phi}V)/2\sigma^2}$

Probability of a projection direction $P(\phi | X, V) = \frac{P(X | V, \phi)P(\phi)}{\int P(X | V, \phi)P(\phi)d\phi}$

Determining the orientation angles: example from the TRPV1 dataset

Structure of the TRPV1 ion channel determined by electron cryo-microscopy

Maofu Liao¹*, Erhu Cao²*, David Julius² & Yifan Cheng¹

FREALIGN (N. Grigorieff) is like a Wiener filter

A Frealign iteration, refining $V^{(n)}$ to $V^{(n+1)}$, consists of two steps:

1. Find the projection image $R_i = C_i \mathbf{P}_{\phi_i} V^{(n)}$ that maximizes the correlation coefficient for each image X_i ,

$$\mathrm{CC} = \frac{X_i \cdot R_i}{|X_i| |R_i|}.$$

2. Update the volume according to

$$V^{(n+1)} = \frac{\sum_{i}^{N} \mathbf{P}_{\phi_{i}}^{\mathbf{T}} C_{i} X_{i}}{k + \sum_{i}^{N} \mathbf{P}_{\phi_{i}}^{\mathbf{T}} C_{i}^{2}}$$

<u>Notes</u>

- 1. C_i is the CTF corresponding to the image X_i .
- 2. The projection operator \mathbf{P}_{ϕ} also

includes translations. So ϕ consists of five variables:

 $\phi = \{\alpha, \beta, \gamma, t_x, t_y\}.$

3. $\mathbf{P}_{\phi_i}^{\mathbf{T}}$ is the corresponding <u>back</u> <u>projection</u> operator. It operates on a 2D image and returns a 3D volume. In Fourier space it yields a volume that is all zeros except for values along a slice.

Probabilities and Likelihoods

Let $\mathbf{X} = \{X_1 ... X_N\}$ be our "stack" of particle images. We'd like to find the best 3D volume consistent with these data, say maximizing $P(V | \mathbf{X})$.

According to Bayes' theorem,

$$P(V \mid \mathbf{X}) = P(\mathbf{X} \mid V) \frac{P(V)}{P(\mathbf{X})}.$$

prior \rightarrow Experiment \rightarrow

 \rightarrow posterior

1. $P(\mathbf{X})$ doesn't depend on V so we can ignore it. 2. $P(\mathbf{X} \mid V)$ is something we can calculate. It's called the <u>likelihood</u>. 3.P(V) is called the <u>prior probability</u>.

4. The product $P(\mathbf{X} | V) P(V)$ is called the <u>posterior probability</u>.

We know how to compute the likelihood

We already know that

$$P(X \mid V, \phi) = (2\pi\sigma^2)^{-J/2} e^{-(X - \mathbf{CP}_{\phi}V)/2\sigma^2}$$

To get the likelihood for one image we just integrate over all the ϕ 's:

$$P(X \mid V) = \int P(X \mid V, \phi) P(\phi) \, d\phi$$

To get the likelihood for the whole dataset we compute the product over all the images,

$$P(\mathbf{X} \mid V) = \prod_{i}^{N} \int P(X_{i} \mid V, \phi) P(\phi) d\phi$$

or for numerical sanity, we compute the log likelihood,

$$L = \sum_{i}^{N} \ln \left(\int P(X_i | V, \phi) P(\phi) d\phi \right).$$

Relion and CryoSPARC both do this to estimate V

$$V = \arg\max_{V} \left[\ln P(V) + \sum_{i}^{N} \ln \left(\int P(X_{i} | V, \phi) P(\phi) d\phi \right) \right]$$

It's not too hard using the E-M algorithm

The Expectation-Maximization (E-M) algorithm has this iteration, guaranteed to increase the likelihood:

$$V^{(n+1)} = \frac{\sum_{i} \int \Gamma_{i}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathbf{T}} C_{i} X_{i} \, d\phi}{\frac{\sigma^{2}}{T\tau^{2}} + \sum_{i} \int \Gamma_{i}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathbf{T}} C_{i}^{2} \, d\phi}$$

where

$$\Gamma_{i}^{(n)}(\phi) = P(\phi | X_{i}, V^{(n)})$$
$$= \frac{P(X_{i} | V^{(n)}, \phi) P(\phi)}{\int P(X_{i} | V^{(n)}, \phi) P(\phi) \, d\phi}$$

Finally, recall,

$$P(X_i | V^{(n)}, \phi) = (2\pi\sigma^2)^{-J/2} e^{-(X_i - \mathbf{CP}_{\phi}V^{(n)})/2\sigma^2}.$$

...Relion's "E step" is basically the evaluation of $\Gamma(\phi)$ for each image

3D Classification

To estimate multiple volumes, we start with the model that a given image results from one of *K* different volumes. $X_i = C_i \mathbf{P}_{\phi} V_{k_i} + N_i, \ k = 1..K$

Then to estimate those volumes, we expand the Γ function to include the probability that an image comes from volume k. Then the update of each volume becomes

$$V_k^{(n+1)} = \frac{\sum_i \int \Gamma_i^{(n)}(k,\phi) \mathbf{P}_{\phi}^{\mathbf{T}} C_i X_i \, d\phi}{\frac{\sigma^2}{T\tau^2} + \sum_i \int \Gamma_i^{(n)}(k,\phi) \mathbf{P}_{\phi}^{\mathbf{T}} C_i^2 \, d\phi}$$

2D Classification uses the same algorithm

Quantity	Meaning in 3D classification	Meaning in 2D classification
V_k	Class volume	Class average image
ϕ	3 Euler angles of orientation + 2 translations	1 angle of rotation + 2 translations
\mathbf{P}_{ϕ}	Projection operator $3D \rightarrow 2D$	Image rotation and shift
$\mathbf{P}_{\phi}^{\mathbf{T}}$	Back-projection operator $2D \rightarrow 3D$	Reverse shift and rotation