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The Fourier Transform 
in One and More 

Dimensions



Fourier reconstruction of a Gaussian function



2 terms



“Converged” at 6 terms



The Fourier Transform gives us the coefficients
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The formulas

Fourier transform





Inverse Fourier transform


G(u) = ∫ g(x)e−i2πuxdx

g(x) = ∫ G(u)e+i2πuxdu

Example: g(x) = e−πx2



Cumputing  at G(u) u = 1

g(x)

cos(2πux)

product



u=2

g(x)

cos(2πux)

product



u=3

g(x)

cos(2πux)

product



u=4

g(x)

cos(2πux)

product



u=5

g(x)

cos(2πux)

product



u=6

g(x)

cos(2πux)

product



u=7

g(x)

cos(2πux)

product



At  ,    is really small.u = 8 G(u)

g(x)

cos(2πux)

product



The Fourier transform of    is  e−πx2 e−πu2

This integral = 1



Fourier reconstruction of a rectangular function



4 terms



Nowhere near convergence at 10 terms



The Fourier Transform of rect(x) is sinc(u)

FT

x

y

u

G(u)
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rect(x) →
sin(πu)

πu
 is also known as:   

sin(πu)
πu

sinc(u)



Reciprocal scaling of FT pairs

g(x) = ae−π(ax)2

x u

G(u) = e−π(u/a)2



The scale property

In general, 

ag(ax) → G(u/a)

If  

what is the FT of    ?


           The FT is:


.


          Let    and  :








g(x) = e−πx2 → G(u) = e−πu2

ga(x) = ae−π(ax)2

Ga(u) = ∫ ae−π(ax)2e−i2πuxdx

x′ = ax x = x′ /a

Ga(u) = ∫ e−πx′ 2e−i2πux′ /adx

= G(u/a)



Reciprocal scaling of FT pairs

g(x) = ae−π(ax)2

x u

Scale property 

 

Delta function 

 

FT Pair 

ag(ax) → G(u/a)

δ(x) = lim
a→∞

ae−π(ax)2

δ(x) → 1

G(u) = e−π(u/a)2



The shift property

g(x) = e−π(x−b)2  
          …three visualizations:

G(u) = e−πu2e−i2πub

Im{G}



The shift property

 

Let

 ,


, and

.


Then


G(u) = ∫ e−π(x−b)2e−i2πuxdx

x′ = x − b
x = x + b

e−i2π(x+b) = e−i2πuxe−i2πub

G(u) = e−i2πub ∫ e−π(x′ )2e−i2πux′ dx′ 

In general, 

g(x − b) → G(u)e−i2πub



Convolution

 

Its FT is


. 

Let

 ,


, and

,


then





f(x) = g * h = ∫ g(s)h(x − s)ds

F(u) = ∬ g(s)h(x − s)e−i2πuxds dx

x′ = x − s
x = x′ + s

e−i2π(x′ +s) = e−i2πus e−i2πux′ 

F(u) = ∫ g(s)e−i2πusdx ∫ h(x′ )e−i2πux′ dx′ 

Hence, 

F(u) = G(u)H(u)



Fourier transform pairs

 

 

e−πx2 → e−πu2

rect(x) →
sin(πu)

πu

δ(x) → 1





1D Fourier transform properties

 

 

 

 

g(x) + h(x) → G(x) + H(x)

ag(ax) → G(u/a)

g(x − b) → G(u)e−i2πub

g ⋆ h → G(u)H(u)

Linearity 

Scale 

Shift 

Convolution



Summary

FT Pairs 

 

 

e−πx2 → e−πu2

rect(x) →
sin(πu)

πu
δ(x) → 1

FT Properties 

 

 

g(x) + h(x) → G(x) + H(x)

ag(ax) → G(u/a)

g(x − b) → G(u)e−i2πub

Linearity 

Scale 

Shift

Fourier transform


G(u) = ∫ g(x)e−i2πuxdx

Inverse Fourier transform


g(x) = ∫ G(u)e+i2πuxdu



The Fourier transform in two dimensions



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



2D Fourier transform





2D  inverse Fourier transform


G(u, v) = ∫ ∫ g(x, y) e−i2π(ux+vy)dx dy

g(x, y) = ∫ ∫ G(u, v) ei2π(ux+vy)du dv



Complex numbers

We’ll represent complex numbers 
using this scheme



FT of a square

g = rect(x) rect(y) G = sinc(u) sinc(v)



FT of a disc

g(x, y) = circ(r)
G(u, v) =

J1(2πρ)
ρ



The shift property

g(x − a, y − b) → G(u, v)e−i2π(au+bv)



2D Shift property

g(x − a, y − b) G(u, v)e−i2π(au+bv)



2D Shift property

g(x − a, y − b) G(u, v)e−i2π(au+bv)



2D Shift property

g(x − a, y − b) G(u, v)e−i2π(au+bv)



Convolution with a Gaussian

FT FT IFT



Convolution with a lattice

FT FT IFT



An undersampling lattice

FT FT IFT



The Fourier Slice Theorem

Projection

 3 

      (16) 
 
where the integral is taken over the full y extent of the object. 
 

Now suppose that we know the Fourier transform of the density distribution, which we 
will call F(u,v).  It can be written as 

 
    (17) 

 
If we evaluate it at v=0, we get 
 

  

 
which is just the (1D) Fourier transform of the projection g(x), 
 
 %(', 0) = ∫-(.)/0123456.     (18) 
 
Thus the projection of an object is a section of its Fourier transform.  In pictures: 
 

 
 
This, plus the rotation property of Fourier transforms, is all we are going to need.  Recall that if 
we rotate a 2D function, its FT rotates similarly.  This means that if we rotate the object and then 
collect a projection, we will have obtained a different section of the 2D FT.  If we collect enough 
such projections, we can fill in the whole FT.  Then by transforming back, we obtain the original 
density map of the object. 
 
This procedure is how computed tomography works, and is also how 3D molecular structures are 
obtained.  In the latter case, the 3D version of the projection theorem says, a 2D projection is 
corresponds to a plane (a central section) of the 3D Fourier transform. 
 
To make a 3D reconstruction from 2D projections of an object, you compute the FT of each 
projection image, which gives you a set of values in a plane.  Then you “insert” it into a 3D 

    g(x) = f (x ,y)dy∫

    F(u, v) = f(x, y)e−i2π (ux+ v y)dxdy∫∫

    

F(u, 0) = f (x ,y)e−i2π (ux )dxdy∫∫
= f (x ,y)dy∫[ ]∫ e−i2πuxdx

Slice

g(x, y) G(u, v)

Pyg
x G(u,0)

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy

 

            

G(u,0) = ∫ (∫ g(x, y)dy) e−i2π(ux)dx

= ℱ{Pyg}

Pyg(x, y) = ∫ g(x, y)dy



Reconstruction using the Fourier Slice Theorem

Projection

 3 

      (16) 
 
where the integral is taken over the full y extent of the object. 
 

Now suppose that we know the Fourier transform of the density distribution, which we 
will call F(u,v).  It can be written as 

 
    (17) 

 
If we evaluate it at v=0, we get 
 

  

 
which is just the (1D) Fourier transform of the projection g(x), 
 
 %(', 0) = ∫-(.)/0123456.     (18) 
 
Thus the projection of an object is a section of its Fourier transform.  In pictures: 
 

 
 
This, plus the rotation property of Fourier transforms, is all we are going to need.  Recall that if 
we rotate a 2D function, its FT rotates similarly.  This means that if we rotate the object and then 
collect a projection, we will have obtained a different section of the 2D FT.  If we collect enough 
such projections, we can fill in the whole FT.  Then by transforming back, we obtain the original 
density map of the object. 
 
This procedure is how computed tomography works, and is also how 3D molecular structures are 
obtained.  In the latter case, the 3D version of the projection theorem says, a 2D projection is 
corresponds to a plane (a central section) of the 3D Fourier transform. 
 
To make a 3D reconstruction from 2D projections of an object, you compute the FT of each 
projection image, which gives you a set of values in a plane.  Then you “insert” it into a 3D 

    g(x) = f (x ,y)dy∫

    F(u, v) = f(x, y)e−i2π (ux+ v y)dxdy∫∫

    

F(u, 0) = f (x ,y)e−i2π (ux )dxdy∫∫
= f (x ,y)dy∫[ ]∫ e−i2πuxdx

Slices

g(x, y) G(u, v)

Pyg
x G(u,0)

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy

 

            

G(u,0) = ∫ (∫ g(x, y)dy) e−i2π(ux)dx

= ℱ{Pyg}

Pyg(x, y) = ∫ g(x, y)dy The rotation property says:

If we can collect projections from all 
directions, we can construct all of G(u, v)

IFT



(Slides demonstrating tomographic reconstruction)
Fourier  
transform

2D reconstruction using the slice theorem



FT of a shifted square

Fourier  
transform

Insert as a slice 
in 2D field

Compute the 
1D projection

2D inverse 
Fourier  
transform

2D reconstruction using the slice theorem



FT of a shifted square

Fourier  
transform

Insert as a slice 
in 2D field

2D inverse 
Fourier  
transform

2D reconstruction using the slice theorem

Compute the 
1D projection



The discrete FT is what is calculated on a computer

2D Fourier transform





2D  discrete Fourier transform


G(u, v) = ∫ ∫ g(x, y) e−i2π(ux+vy)dx dy

G(k, l) =
1
N

N/2−1

∑
i=−N/2

N/2−1

∑
j=−N/2

g(i, j) e−i2π(ik+jl)/N



The DFT of a 32 x 32 pixel image has 32 x 32 complex pixel values

DFT



But the DFT of a real image has twofold redundancy



Summary of 2D Fourier transform

2DFT Pairs 

 

 

 

 

 

e−π(x2+y2) → e−π(u2+v2)

rect(x)rect(y) → sinc(u)sinc(v)

circ(r) →
J1(2πρ)

ρ

δ(x)δ(y) → 1

III(x, y) → III(u, v)

2DFT Properties 

 

 

 

 

ab g(ax, by) → G(u/a, v/b)

g(x − a, y − b) → G(u, v)e−i2π(au+bv)

g(x′ , y′ ) → G(u′ , v′ )

Py g(x, y) → G(u,0)

f ⋆ g → FG

Scale 

Shift 

Rotation 

Projection 

Convolution

 

 

(x′ , y′ ) = Rθ(x, y)

(u′ , v′ ) = Rθ(u, v)sinc(u) =
sin(πu)

πu



The 3D transform

3D Fourier transform





3D Inverse Fourier transform


G(u, v, w) = ∫ ∫ ∫ g(x, y, z)e−i2π(ux+vy+wz)dx dy dz

g(x, y, z) = ∫ ∫ ∫ G(u, v, w)e+i2π(ux+vy+wz)du dv dw


