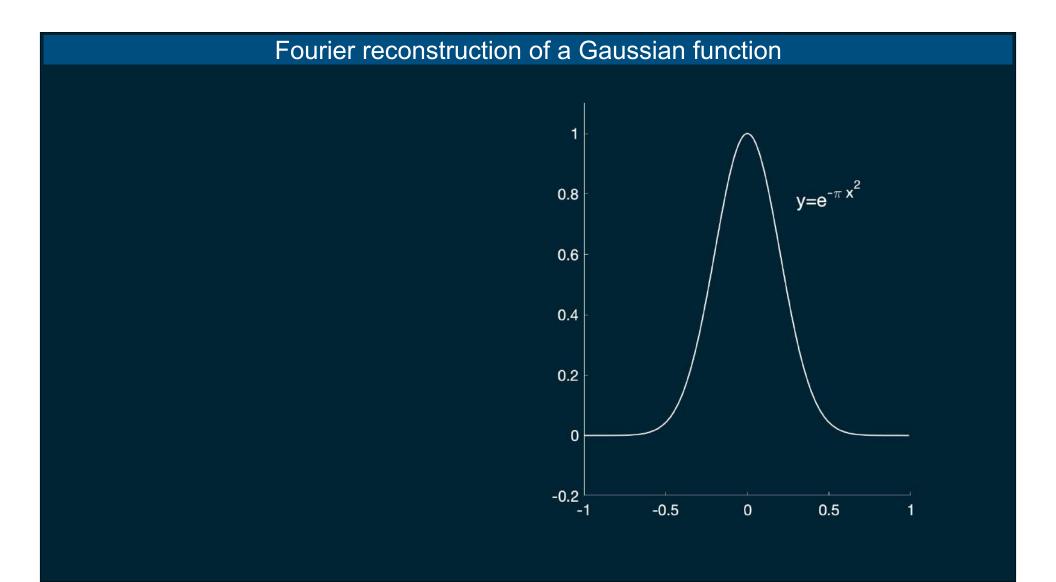
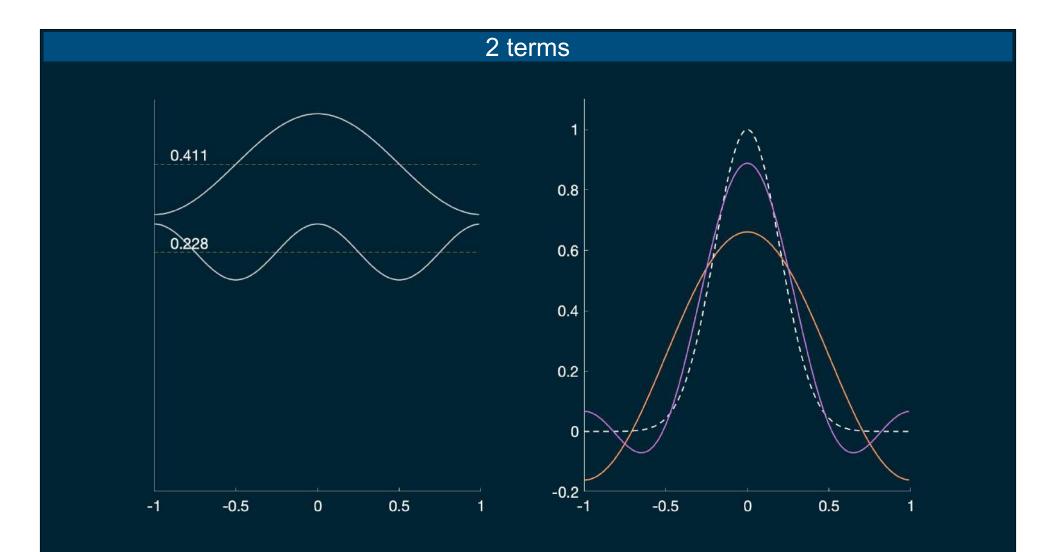
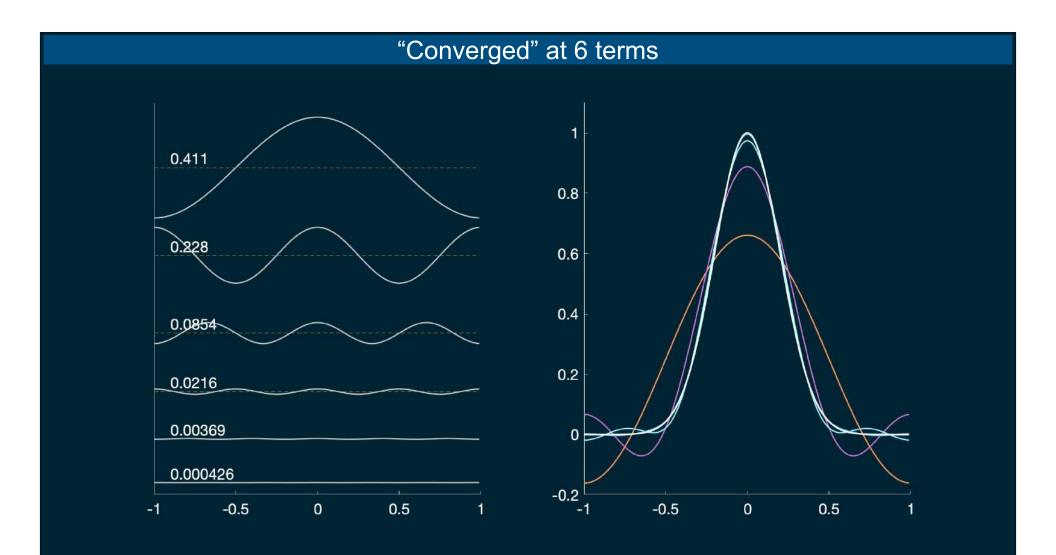
# **Cryo-EM Principles**

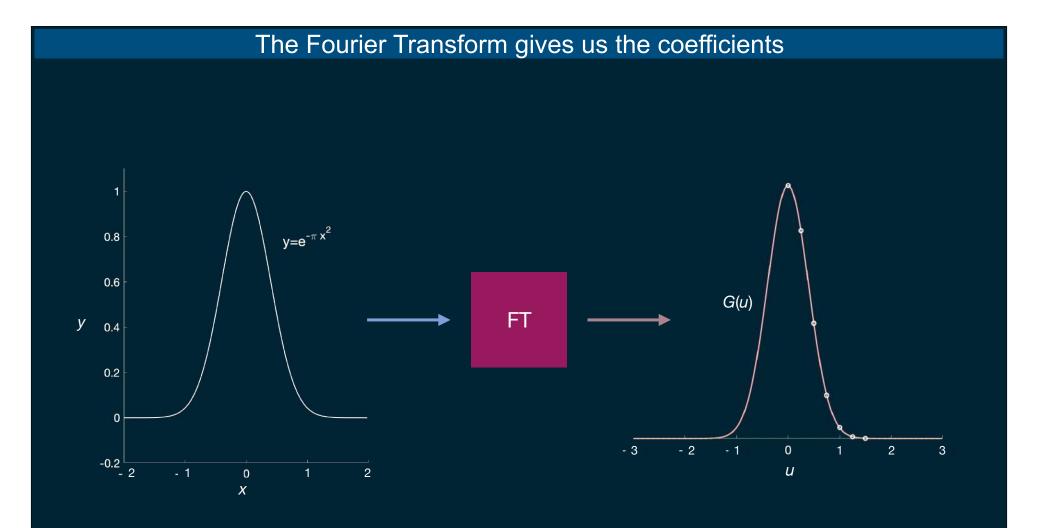
# The Fourier Transform in One and More Dimensions

Fred Sigworth Yale University







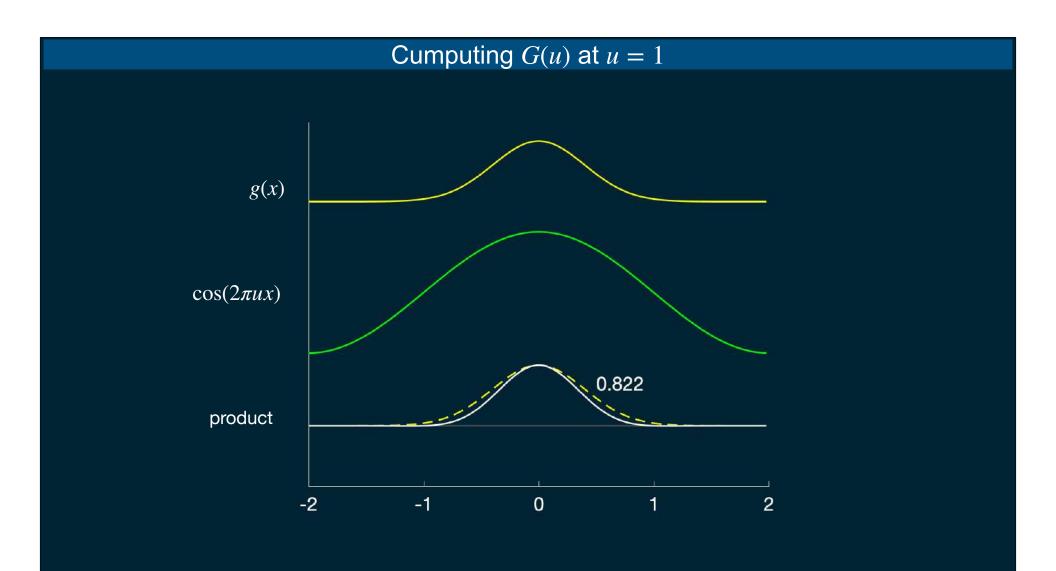


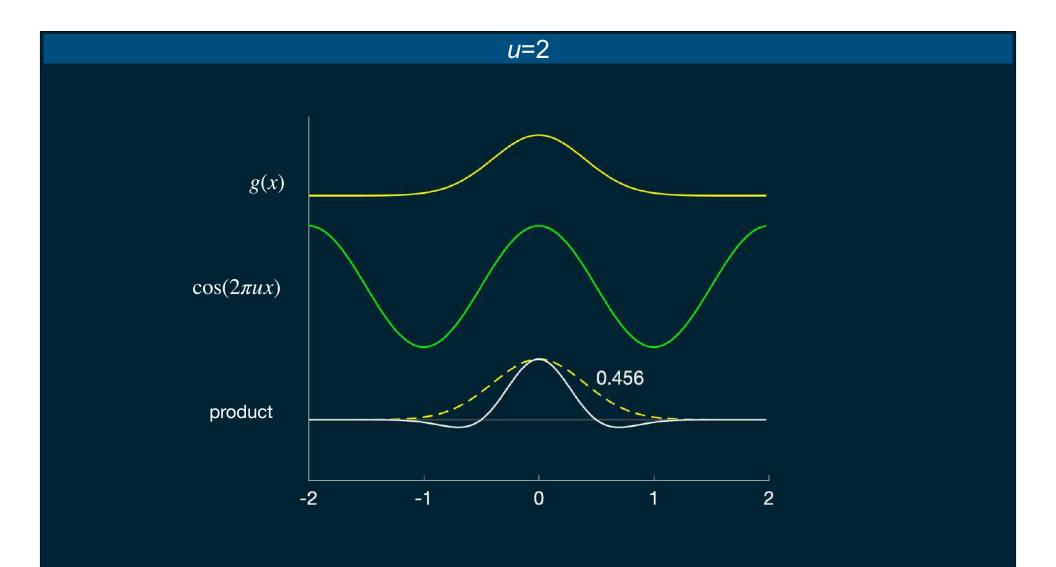
### The formulas

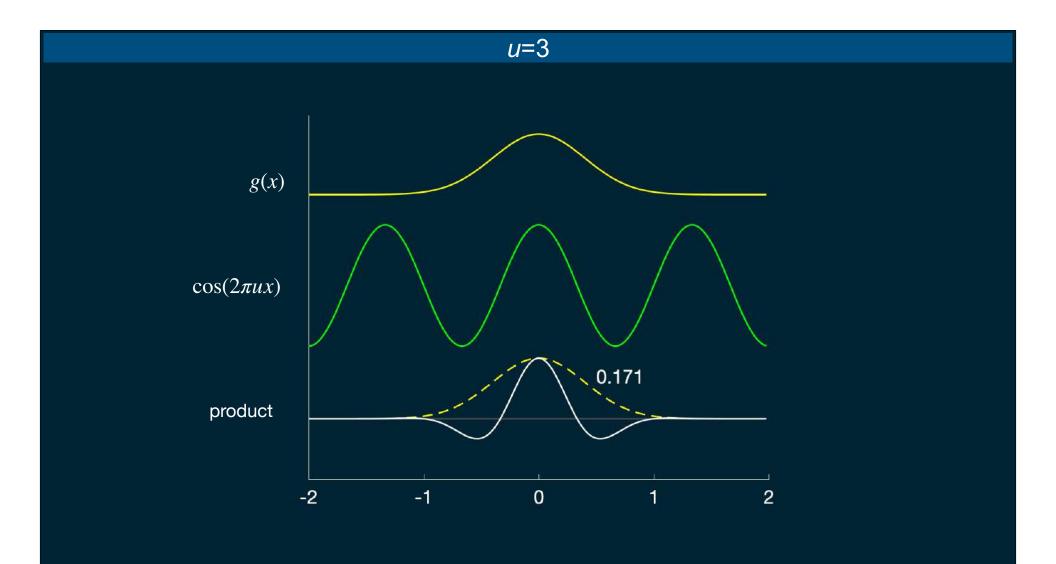
Fourier transform  $G(u) = \int g(x)e^{-i2\pi ux}dx$ 

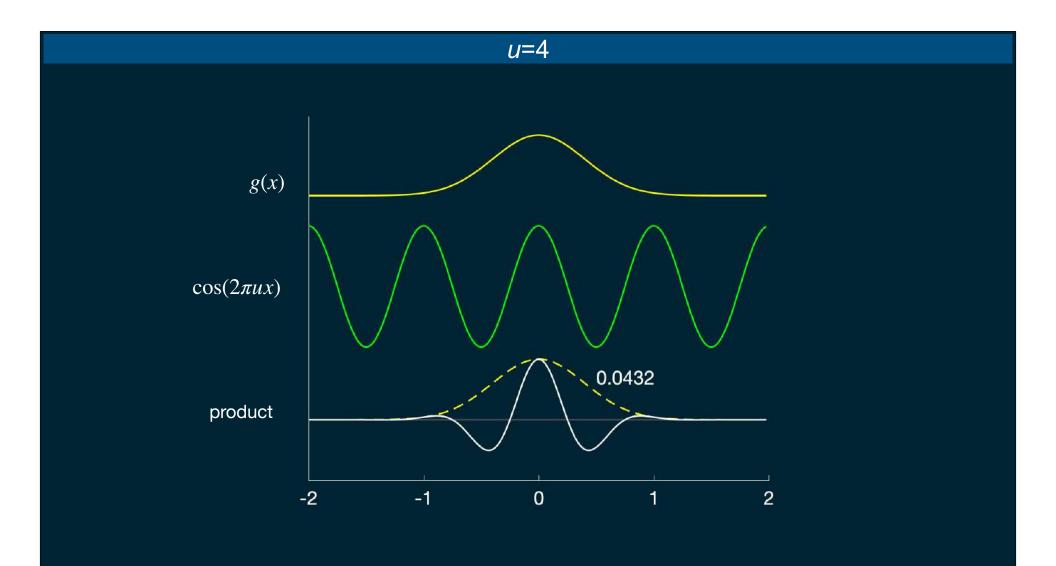
Example:  $g(x) = e^{-\pi x^{2}}$ 

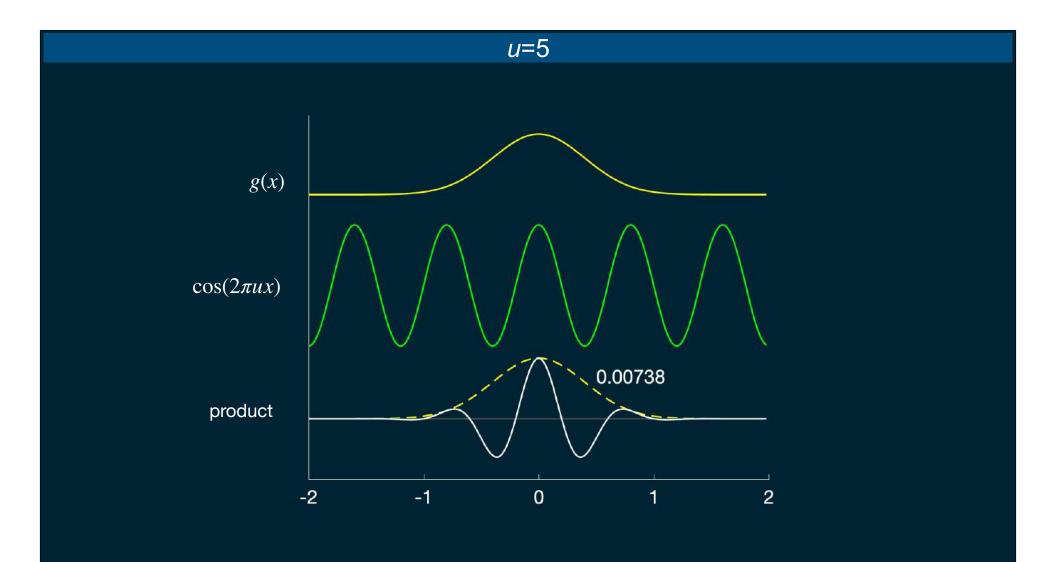
Inverse Fourier transform  $g(x) = \int G(u)e^{+i2\pi ux}du$ 



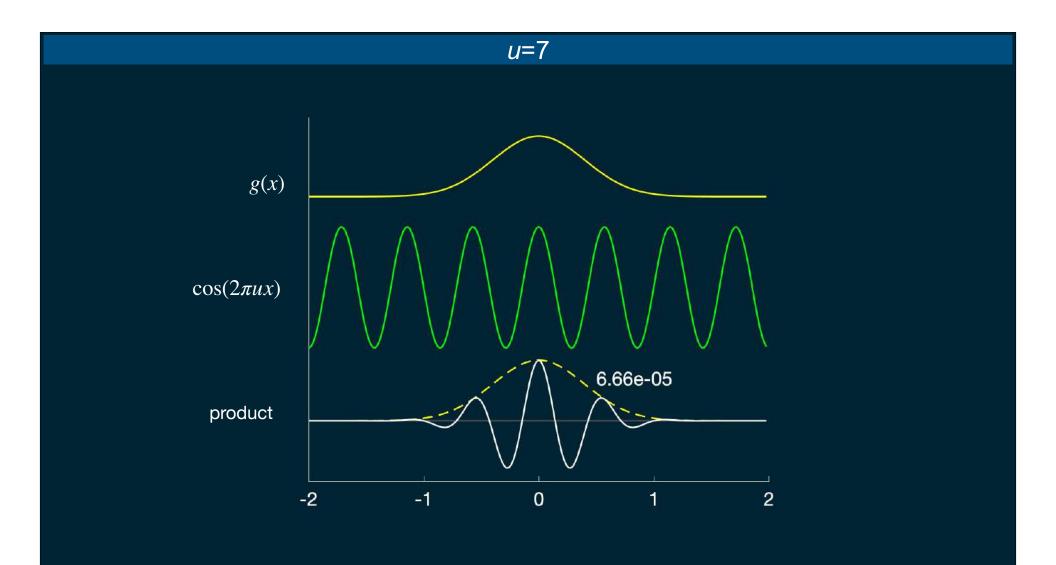


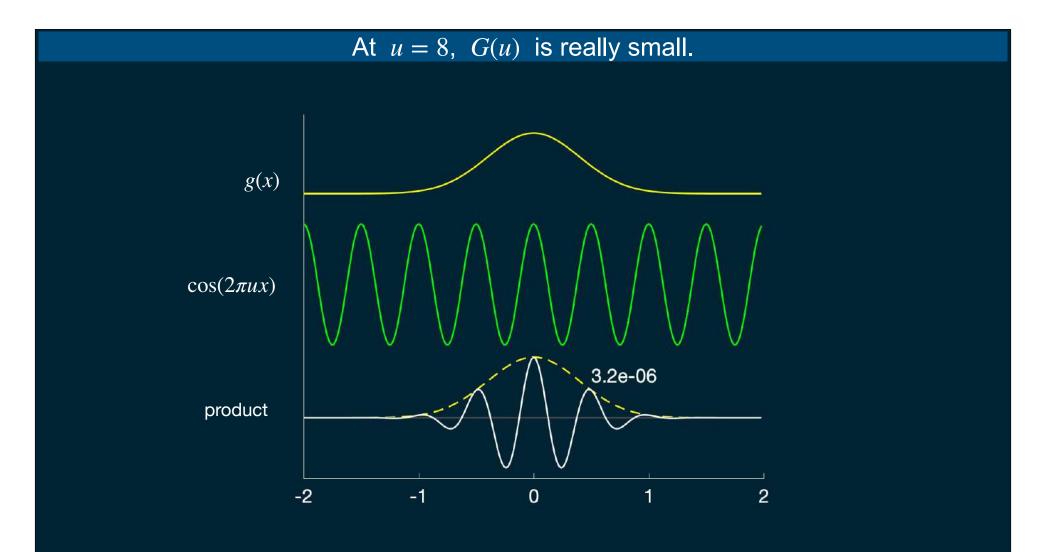












# The Fourier transform of $e^{-\pi x^2}$ is $e^{-\pi u^2}$

$$G(u) = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{-i2\pi ux} dx$$
$$= \int_{-\infty}^{\infty} e^{-\pi (x^2 + i2ux)} dx$$

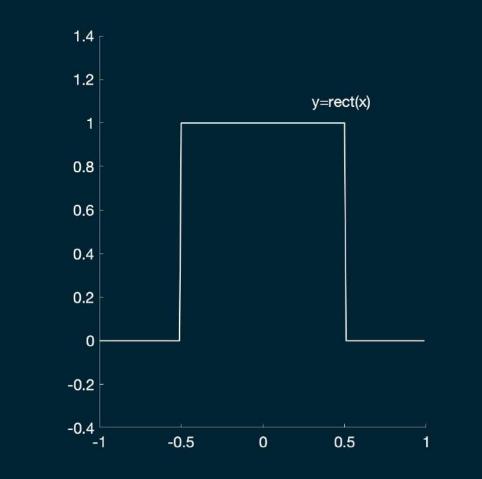
This integral can be evaluated by completing the square in the exponent,

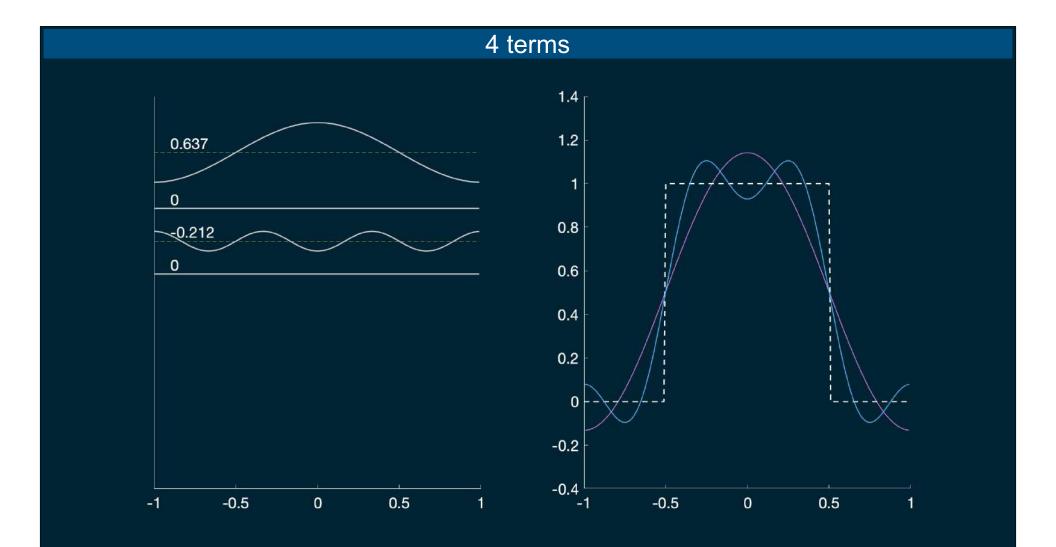
$$G(u) = \int_{-\infty}^{\infty} e^{-\pi (x^2 + i2ux - u^2)} dx \cdot e^{-\pi u^2}$$
$$= \int_{-\infty}^{-\infty} e^{-\pi (x + iu)^2} dx e^{-\pi u^2}$$
This integral = 1

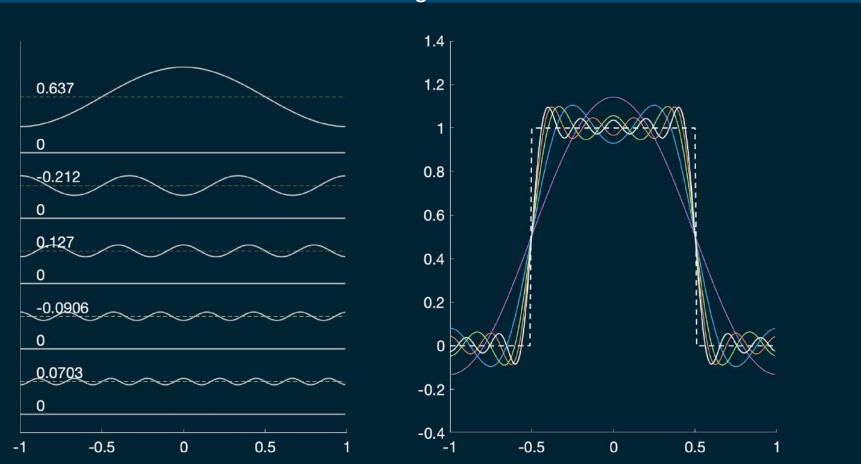
The final result is that

$$G(u) = e^{-\pi u^2}$$

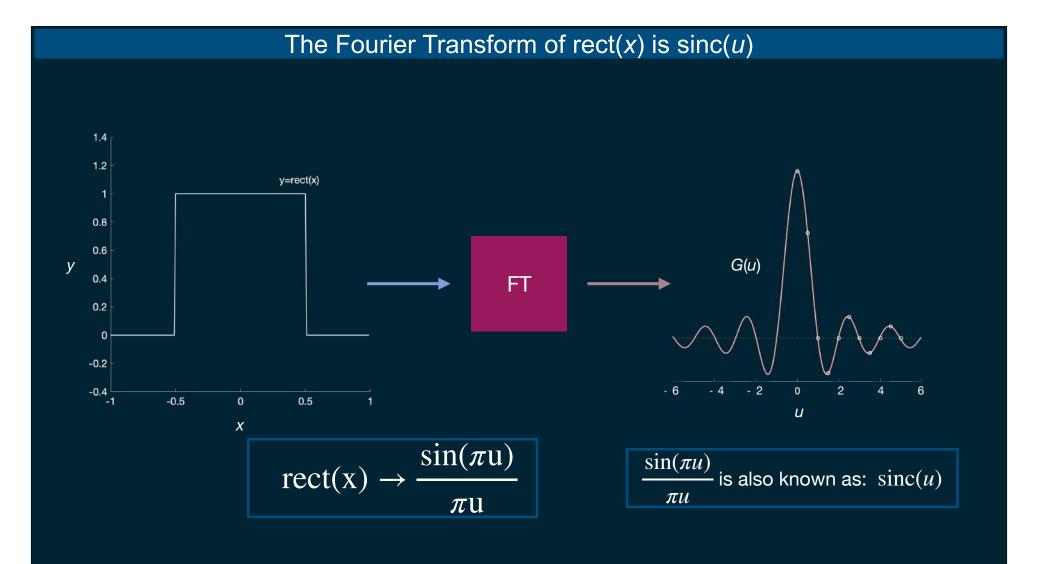
## Fourier reconstruction of a rectangular function



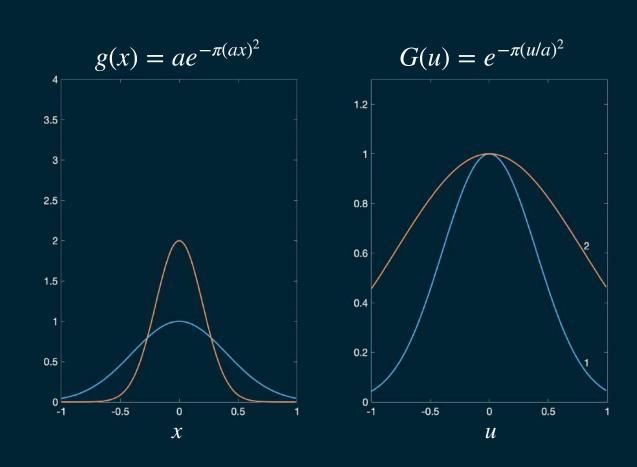




## Nowhere near convergence at 10 terms



## Reciprocal scaling of FT pairs



### The scale property

If  $g(x) = e^{-\pi x^2} \rightarrow G(u) = e^{-\pi u^2}$ what is the FT of  $g_a(x) = ae^{-\pi (ax)^2}$ ?

The FT is:  

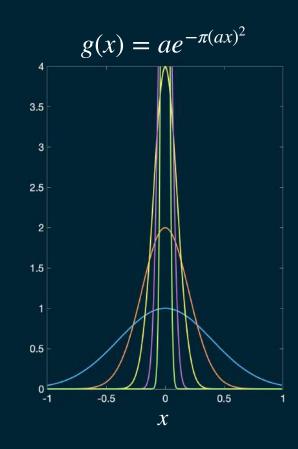
$$G_{a}(u) = \int ae^{-\pi(ax)^{2}}e^{-i2\pi ux}dx.$$
Let  $x' = ax$  and  $x = x'/a$ :  

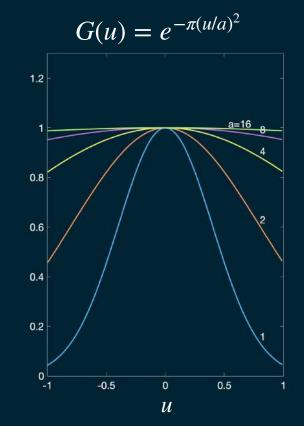
$$G_{a}(u) = \int e^{-\pi x'^{2}}e^{-i2\pi ux'/a}dx$$

$$= G(u/a)$$

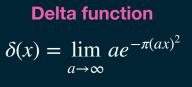
In general,  $ag(ax) \rightarrow G(u/a)$ 

## Reciprocal scaling of FT pairs





Scale property  $ag(ax) \rightarrow G(u/a)$ 

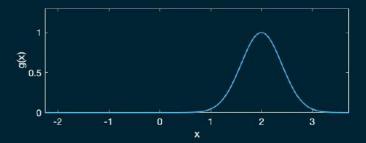


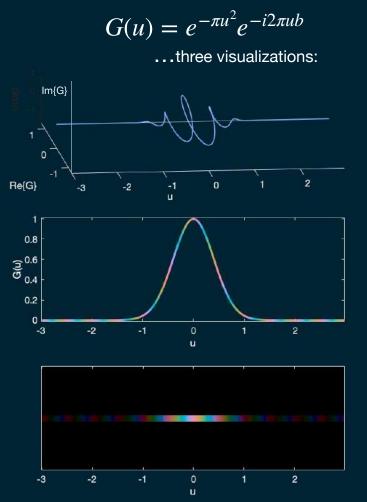


 $\delta(x) \to 1$ 

## The shift property

$$g(x) = e^{-\pi(x-b)^2}$$





## The shift property

$$G(u) = \int e^{-\pi(x-b)^2} e^{-i2\pi ux} dx$$

Let

$$x' = x - b,$$
  

$$x = x + b, \text{ and}$$
  

$$e^{-i2\pi(x+b)} = e^{-i2\pi ux}e^{-i2\pi ub}$$

In general,  $g(x-b) \rightarrow G(u)e^{-i2\pi ub}$ 

Then

$$G(u) = e^{-i2\pi ub} \int e^{-\pi(x')^2} e^{-i2\pi ux'} dx$$

## Convolution

$$f(x) = g * h = \int g(s)h(x - s)ds$$

Its FT is

$$F(u) = \iint g(s)h(x-s)e^{-i2\pi ux}ds\,dx.$$

Let

$$x' = x - s,$$
  

$$x = x' + s, \text{ and}$$
  

$$e^{-i2\pi(x'+s)} = e^{-i2\pi u s} e^{-i2\pi u x}$$

Hence, F(u) = G(u)H(u)

then

$$F(u) = \int g(s)e^{-i2\pi us}dx \int h(x')e^{-i2\pi ux'}dx'$$

## Fourier transform pairs

$$e^{-\pi x^2} \rightarrow e^{-\pi u^2}$$
  
 $\operatorname{rect}(x) \rightarrow \frac{\sin(\pi u)}{\pi u}$   
 $\delta(x) \rightarrow 1$ 



### 1D Fourier transform properties

 $g(x) + h(x) \rightarrow G(x) + H(x) \quad \text{Linearity}$   $ag(ax) \rightarrow G(u/a) \quad \text{Scale}$   $g(x - b) \rightarrow G(u)e^{-i2\pi ub} \quad \text{Shift}$   $g \star h \rightarrow G(u)H(u) \quad \text{Convolution}$ 

#### Summary

Fourier transform  

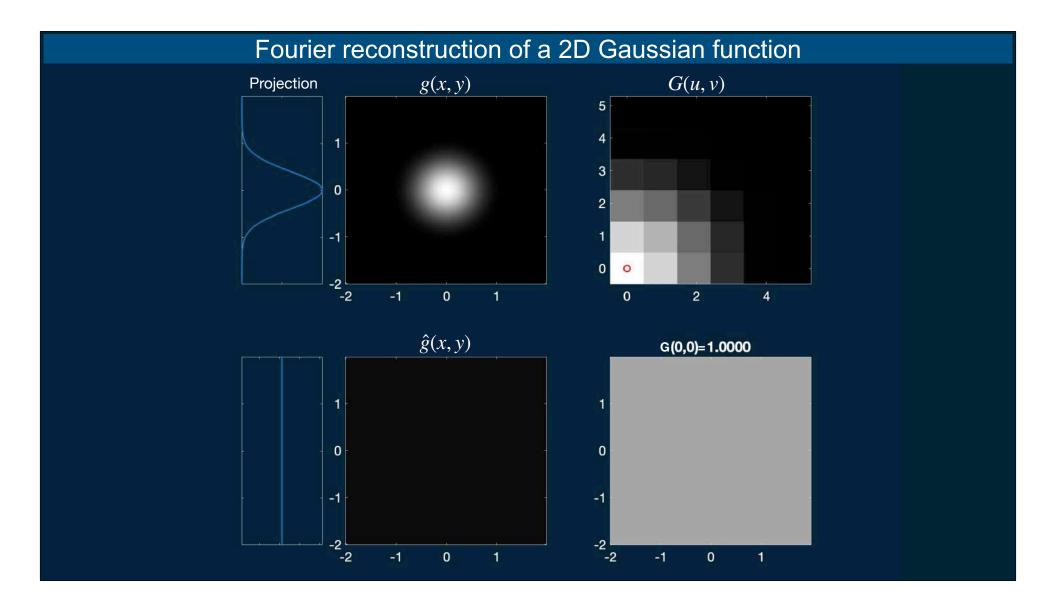
$$G(u) = \int g(x)e^{-i2\pi ux}dx$$

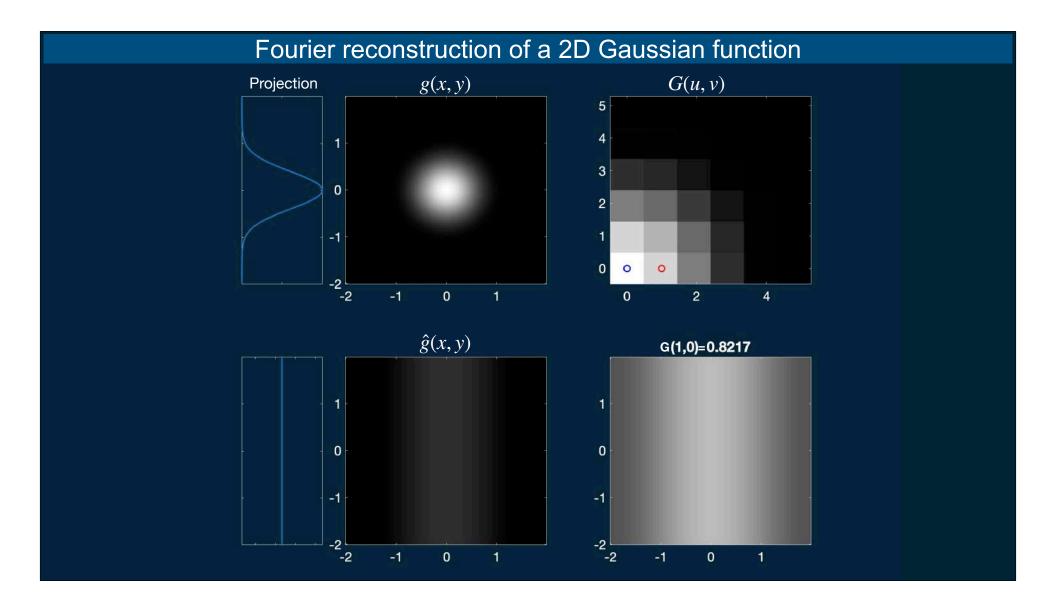
Inverse Fourier transform  $g(x) = \int G(u)e^{+i2\pi ux} du$ 

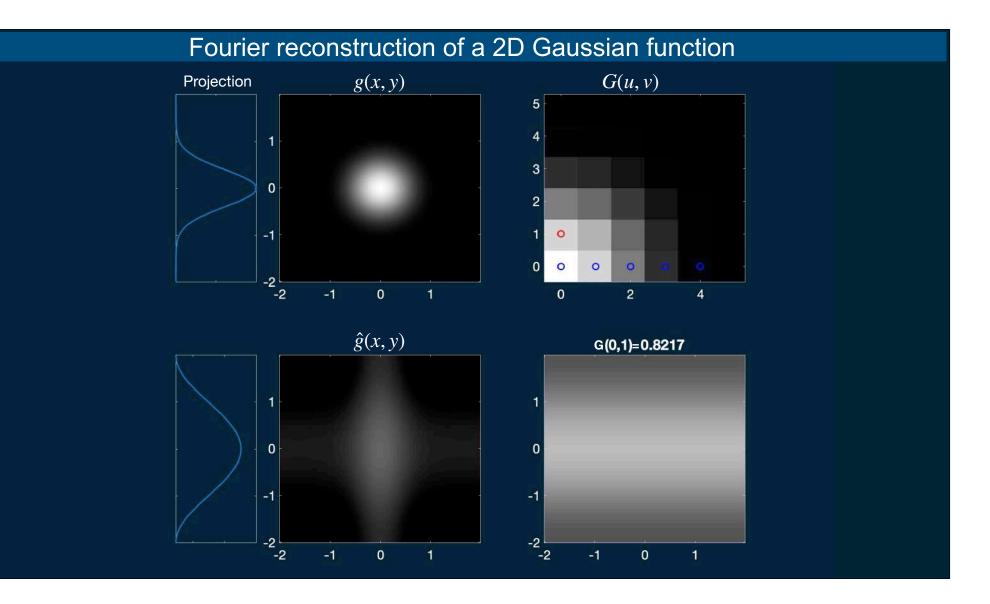
$$\frac{\text{FT Pairs}}{e^{-\pi x^2} \to e^{-\pi u^2}}$$
$$\operatorname{rect}(x) \to \frac{\sin(\pi u)}{\pi u}$$
$$\delta(x) \to 1$$

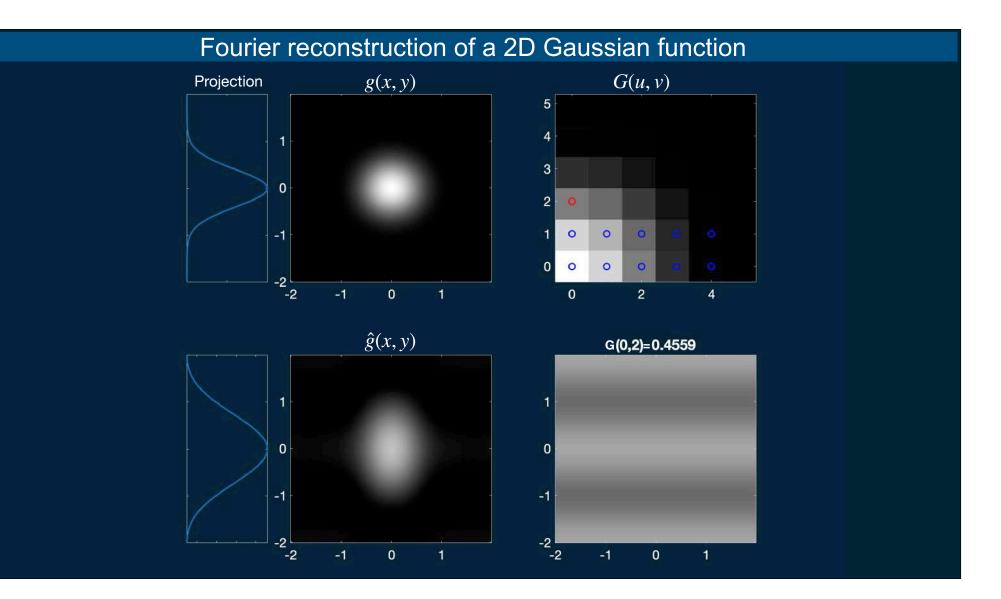
FT Properties $g(x) + h(x) \rightarrow G(x) + H(x)$ Linearity $ag(ax) \rightarrow G(u/a)$ Scale $g(x-b) \rightarrow G(u)e^{-i2\pi ub}$ Shift

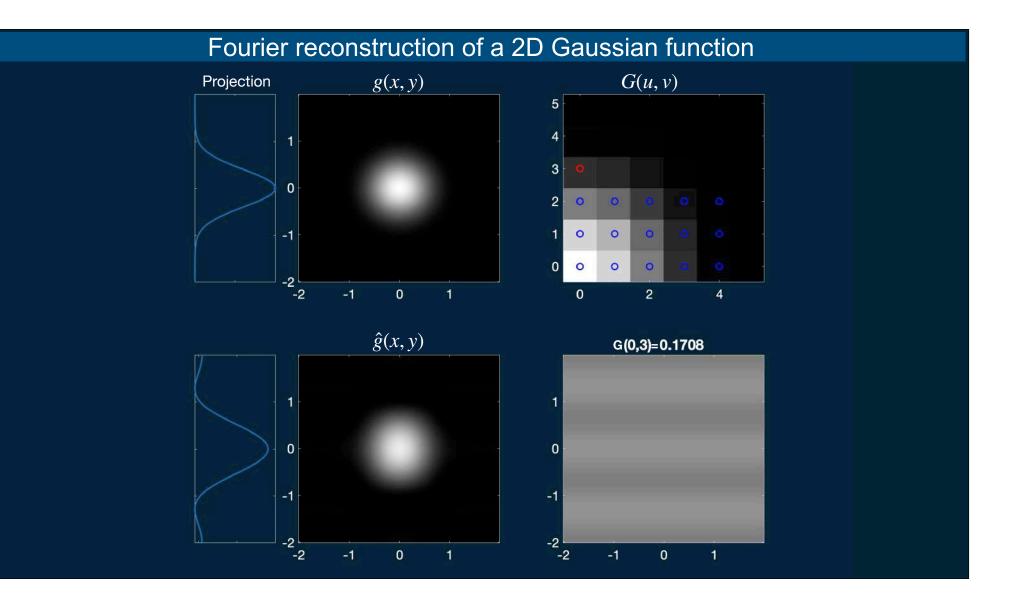
# The Fourier transform in two dimensions







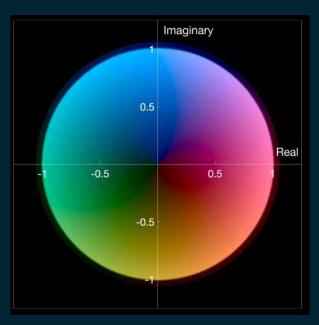




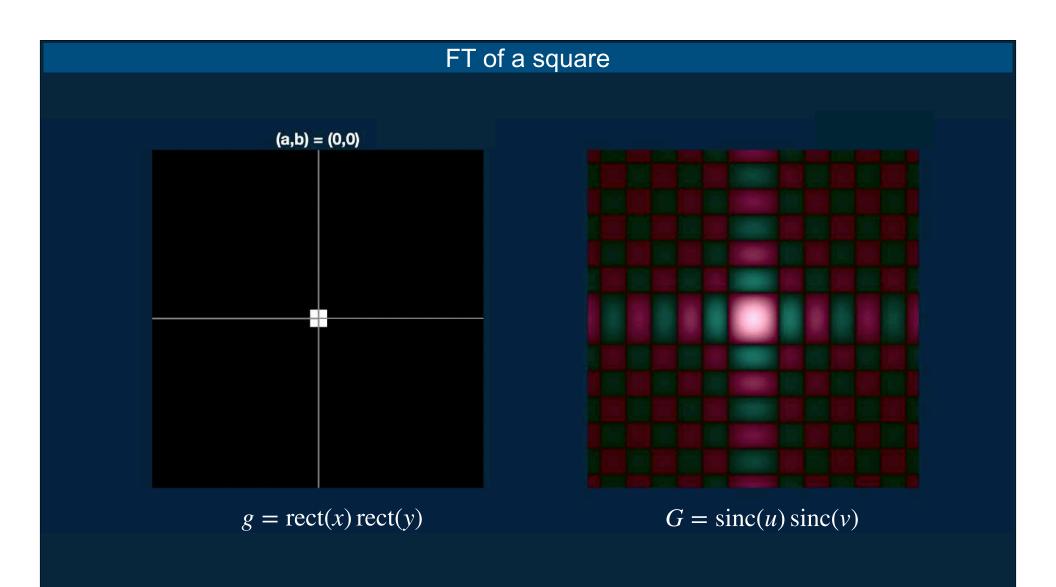
2D Fourier transform  $G(u, v) = \iint g(x, y) e^{-i2\pi(ux+vy)} dx dy$ 

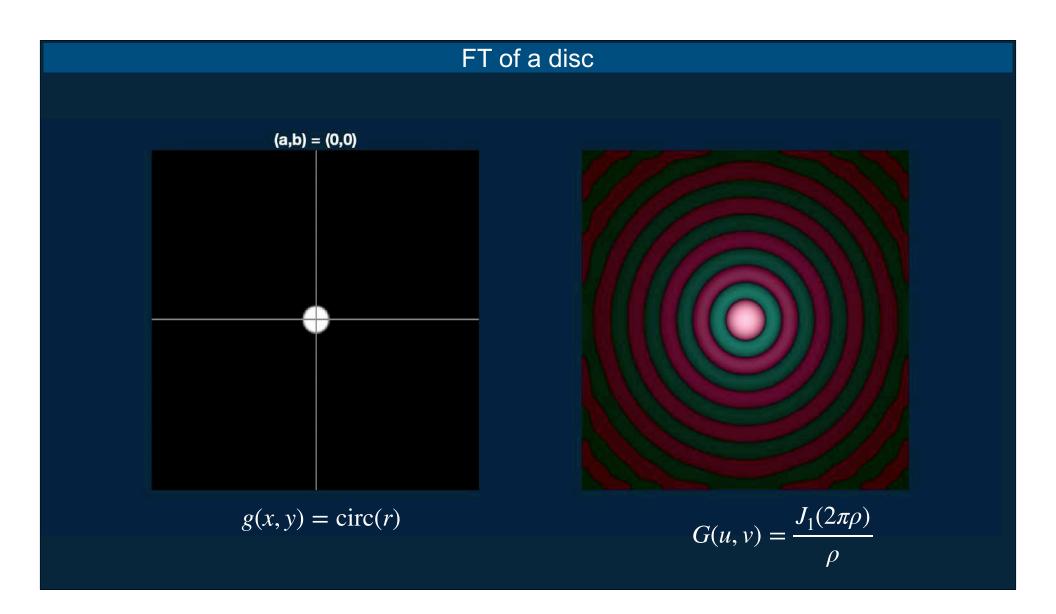
2D inverse Fourier transform  $g(x, y) = \iint G(u, v) e^{i2\pi(ux+vy)} du dv$ 

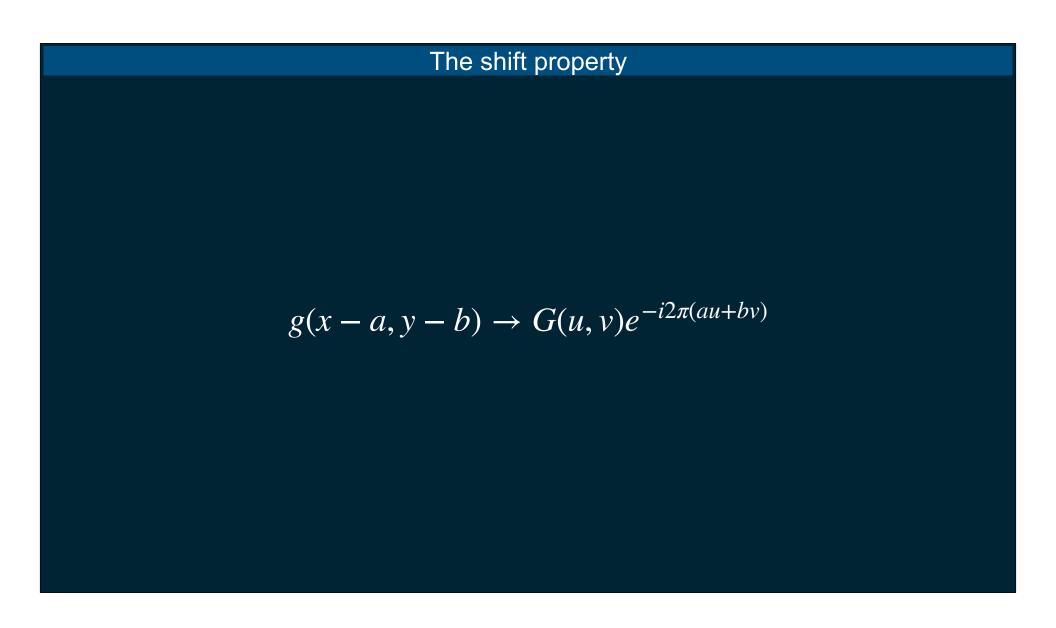
#### Complex numbers

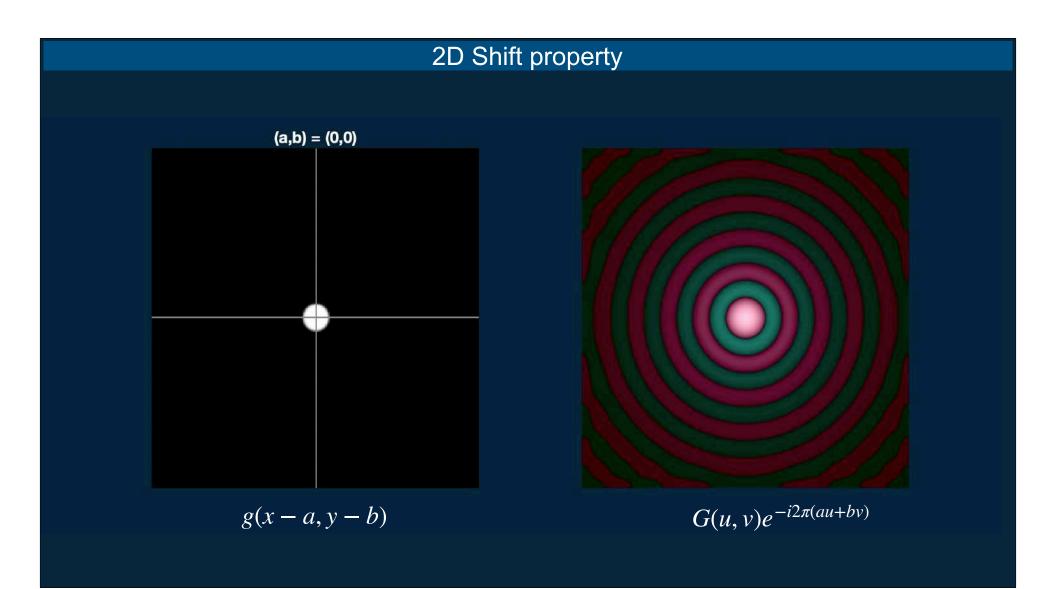


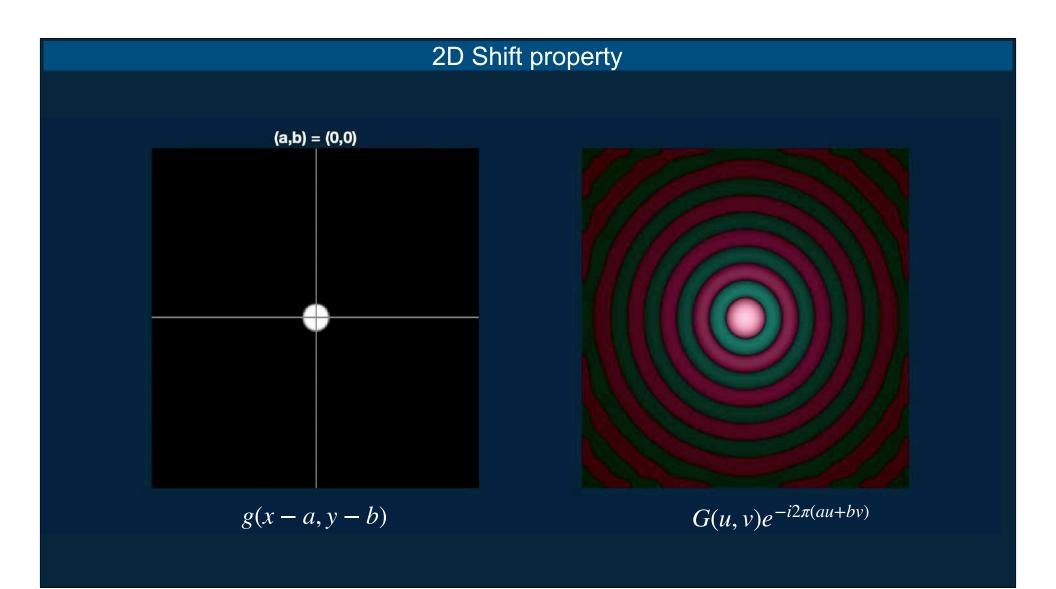
We'll represent complex numbers using this scheme

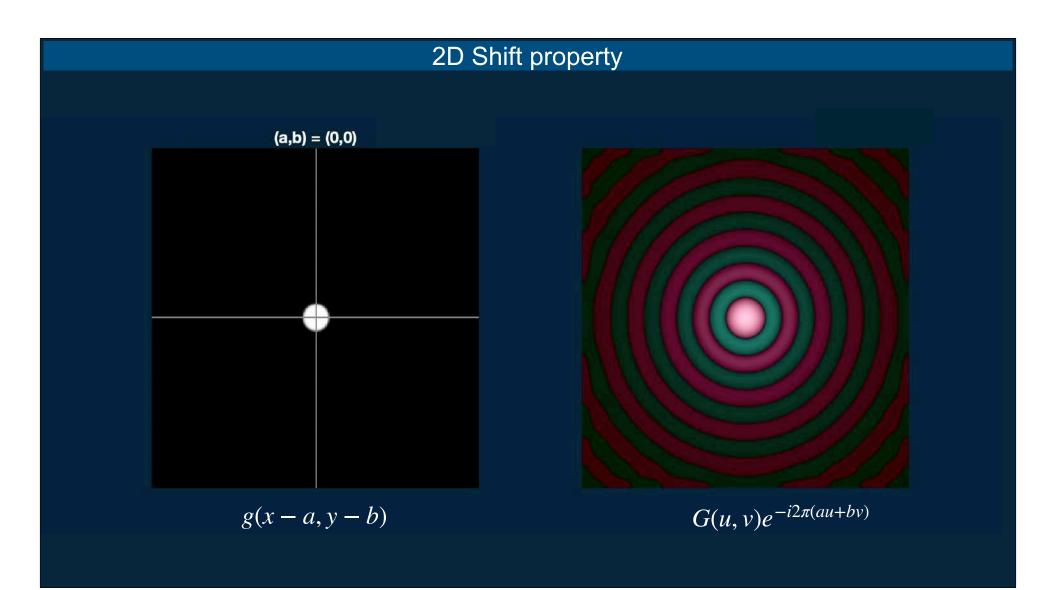




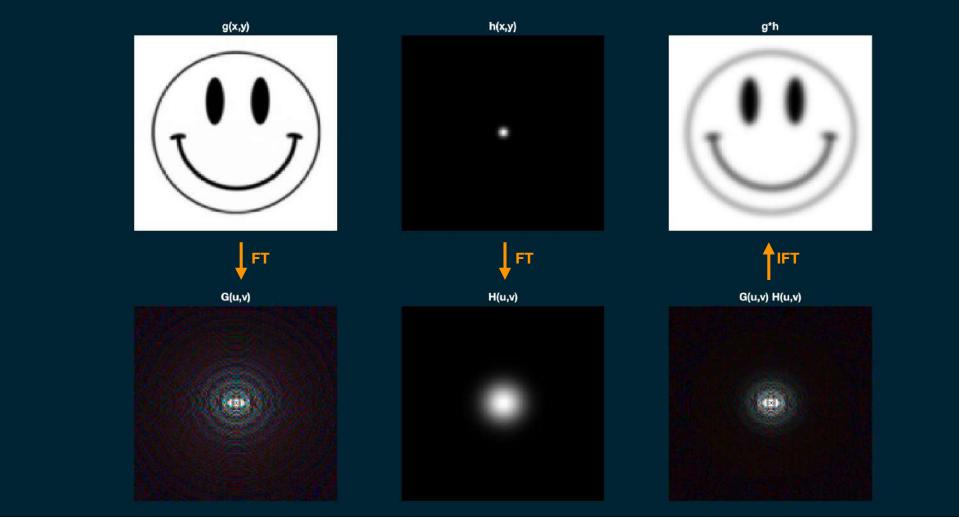


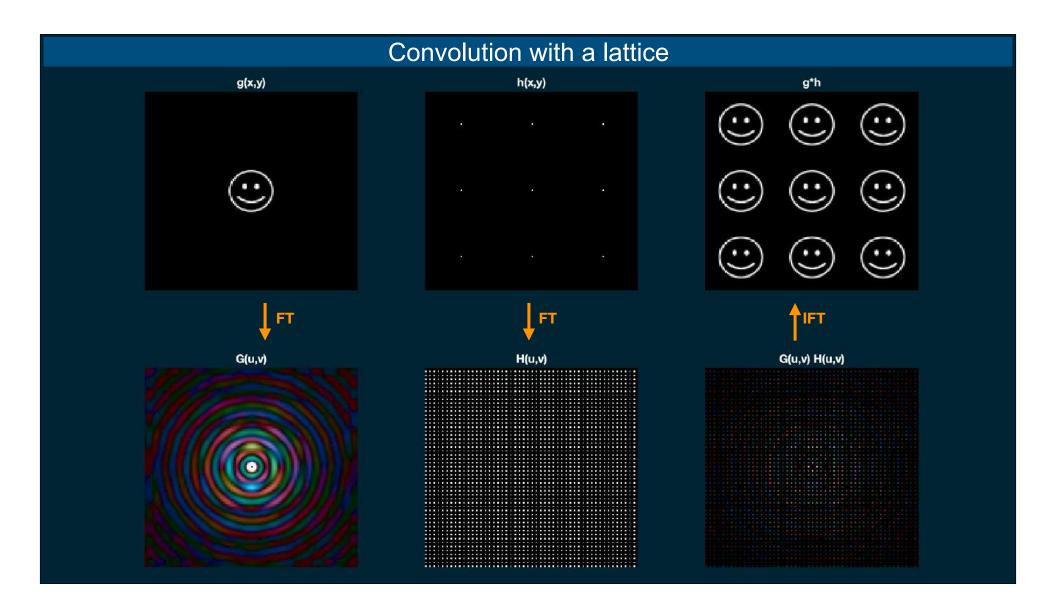


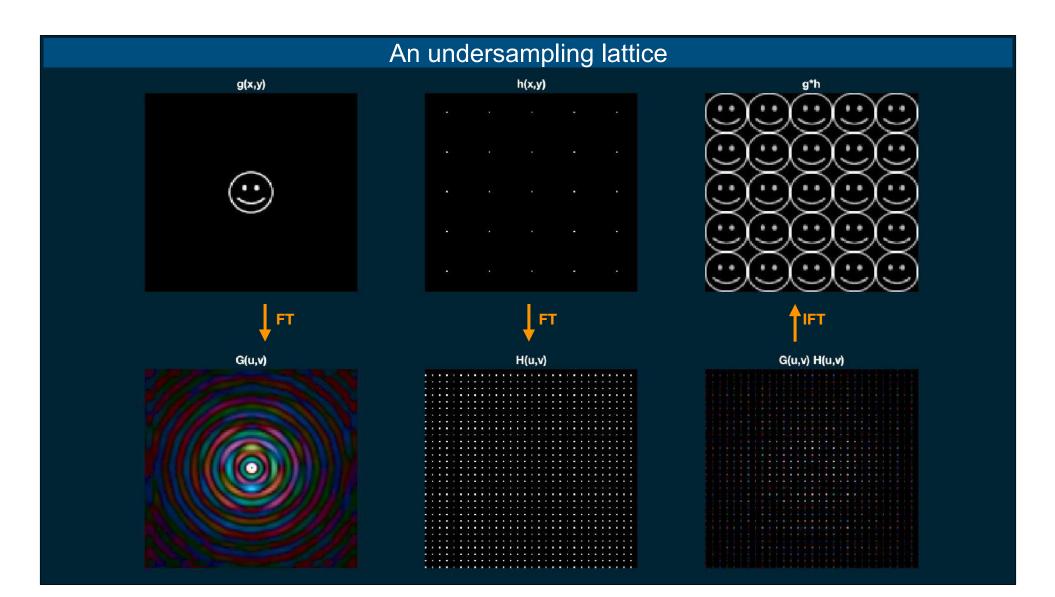




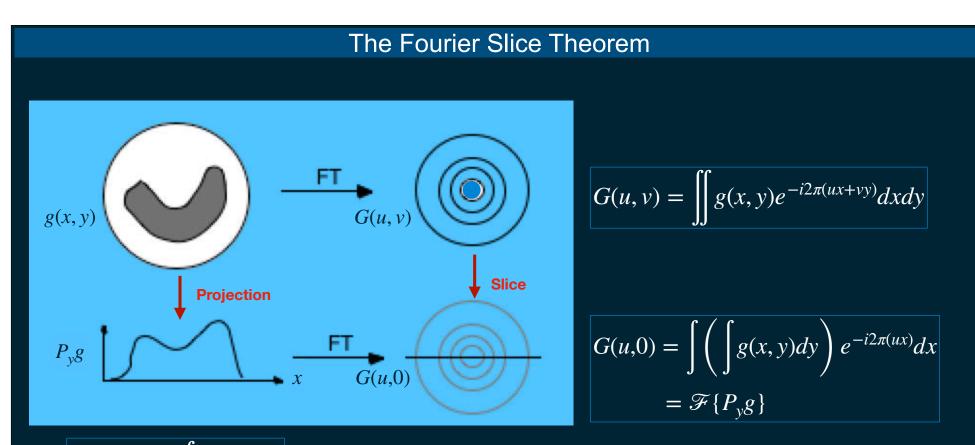
#### Convolution with a Gaussian





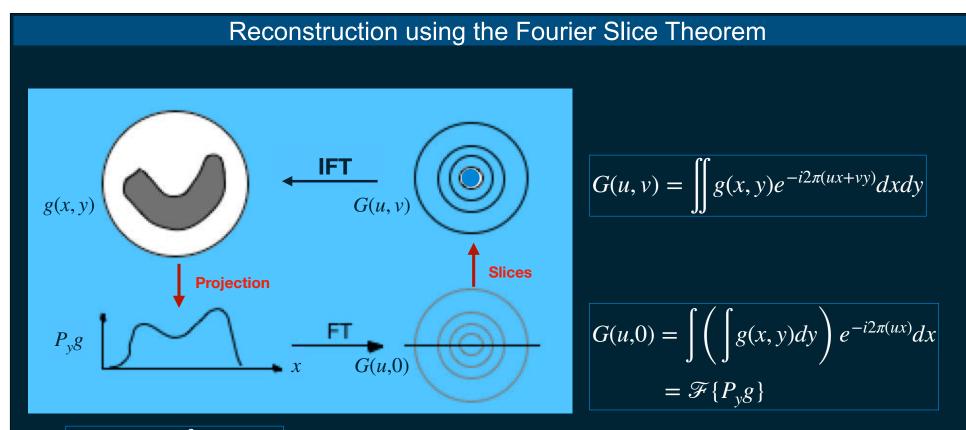


$$= \int \left[ \int f(x,y) dy \right] e^{-i 2\pi i x dx} dx$$



$$P_{y}g(x,y) = \int g(x,y)dy$$

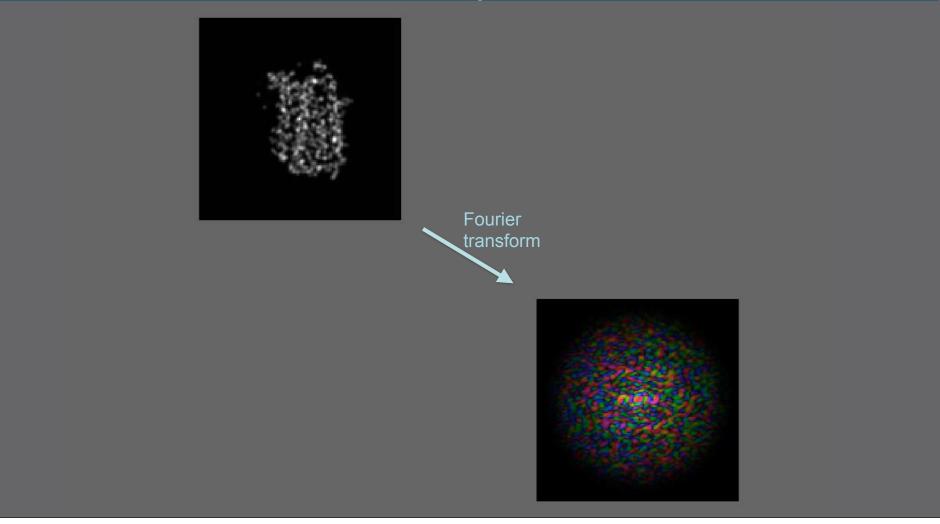
$$= \int \left[ \int f(x,y) dy \right] e^{-i2\pi i x dx} dx$$



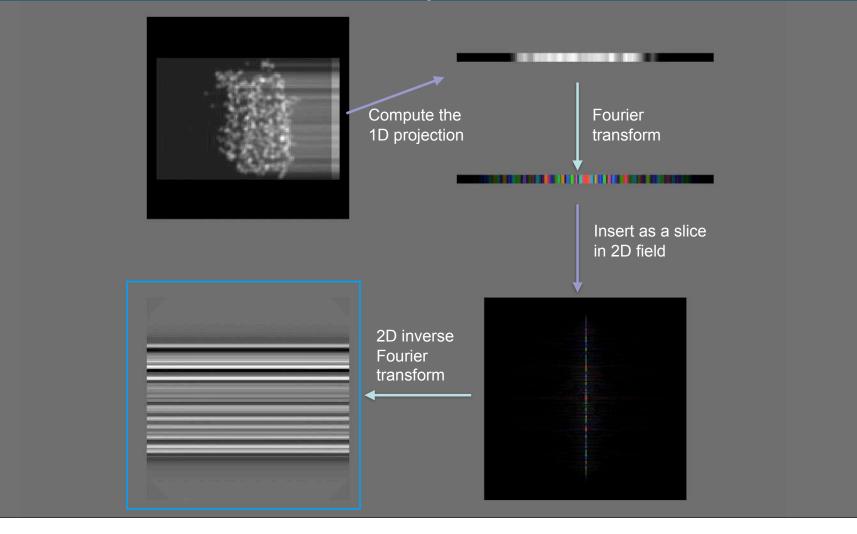
$$P_{y}g(x,y) = \int g(x,y)dy$$

The rotation property says: If we can collect projections from all directions, we can construct all of G(u, v)

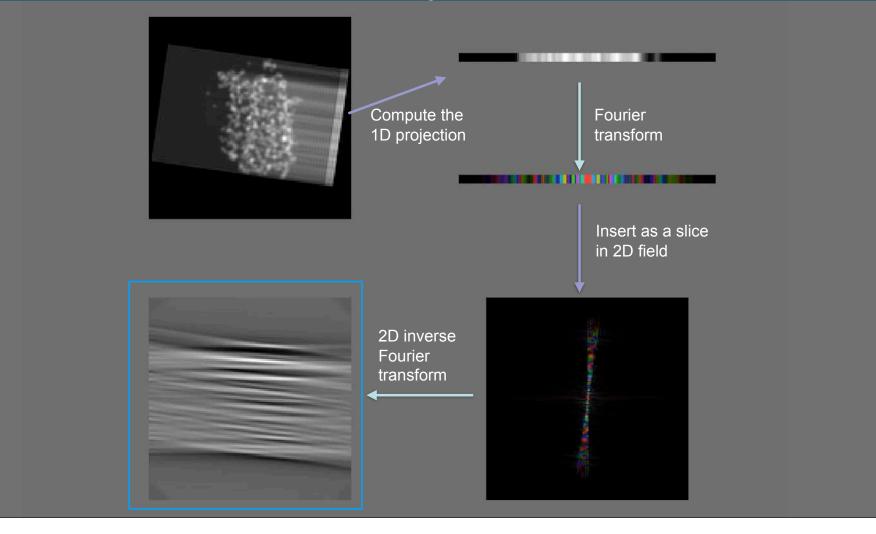
## 2D reconstruction using the slice theorem



## 2D reconstruction using the slice theorem



## 2D reconstruction using the slice theorem

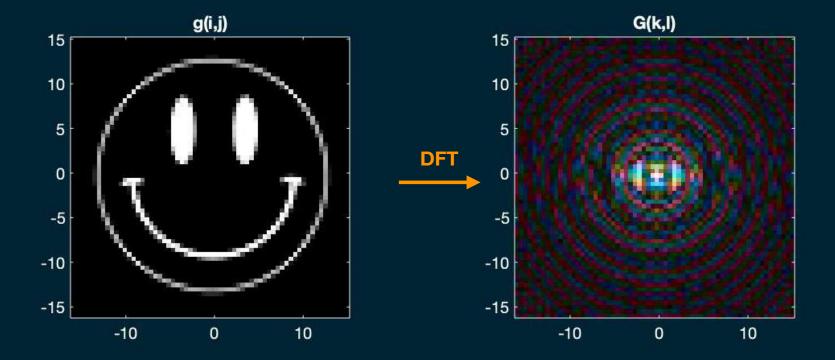


#### The discrete FT is what is calculated on a computer

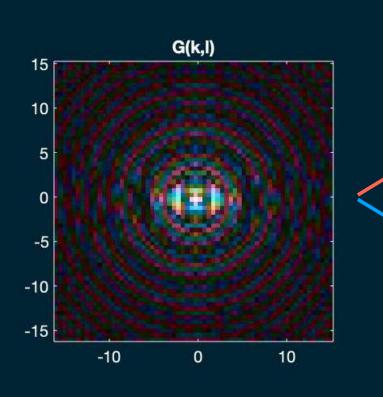
2D Fourier transform  $G(u, v) = \iint g(x, y) e^{-i2\pi(ux+vy)} dx dy$ 

2D discrete Fourier transform  $G(k, l) = \frac{1}{N} \sum_{i=-N/2}^{N/2-1} \sum_{j=-N/2}^{N/2-1} g(i, j) e^{-i2\pi(ik+jl)/N}$ 

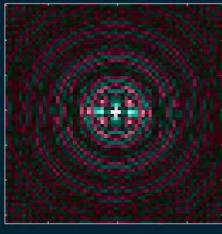
#### The DFT of a 32 x 32 pixel image has 32 x 32 complex pixel values



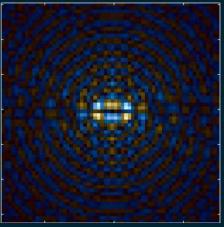
#### But the DFT of a real image has twofold redundancy



**Real part** 



#### Imaginary part



# Summary of 2D Fourier transform

| 2DFT Pairs                                              | 2DFT Properties                                    |                              |
|---------------------------------------------------------|----------------------------------------------------|------------------------------|
| $e^{-\pi(x^2+y^2)} \to e^{-\pi(u^2+v^2)}$               | $ab g(ax, by) \rightarrow G(u/a, v/b)$             | Scale                        |
| $rect(x)rect(y) \rightarrow sinc(u)sinc(v)$             | $g(x-a, y-b) \rightarrow G(u, v)e^{-i2\pi(au+bv)}$ | Shift                        |
| $\operatorname{circ}(r) \to \frac{J_I(2\pi\rho)}{\rho}$ | $g(x',y') \rightarrow G(u',v')$                    | Rotation                     |
| $\delta(x)\delta(y) \to 1$                              | $P_y g(x, y) \to G(u, 0)$                          | Projection                   |
| $III(x, y) \to III(u, v)$                               | $f \star g \to FG$                                 | Convolution                  |
|                                                         | (x')                                               | $(x, y') = R_{\theta}(x, y)$ |
| $\operatorname{sinc}(u) = \frac{\sin(\pi u)}{\pi u}$    | ( <i>u</i> )                                       | $(v, v') = R_{\theta}(u, v)$ |

#### The 3D transform

3D Fourier transform  

$$G(u, v, w) = \iiint g(x, y, z) e^{-i2\pi(ux + vy + wz)} dx \, dy \, dz$$

3D Inverse Fourier transform  $g(x, y, z) = \iiint G(u, v, w)e^{+i2\pi(ux+vy+wz)}du \, dv \, dw$