
Phase-contrast	imaging	in	the	EM	
	
For	cryo-EM	imaging	of	biological	molecules	the	most	important	imaging	mode	is	phase	
contrast.		The	phase	of	an	electron	wave	is	shifted	by	its	passage	near	the	nucleus	of	each	
atom.		The	positive	potential	it	experiences	(a	few	tens	of	volts	over	a	path	length	on	the	
order	of	an	angstrom)	results	in	a	small	phase	advance	on	the	order	of	a	milliradian.	
	

	
	
	
The	average	inner	potential	of	water	(or	vitreous	ice)	is	about	5	volts;	for	lipid	bilayers,	
about	6.5V;	for	protein,	about	7.5V.		It	is	the	contrast	between	protein	and	ice	that	we	are	
usually	imaging.		Below	is	shown	the	calculated	inner	potential	of	a	small	protein	in	water.	
The	map	has	been	smoothed	by	filtering	it	to	10	Å	resolution.	
	

									 	 											 	

	
The	amount	of	phase	shift	the	electron-wave	encounters	is	proportional	to	the	integral	of	
the	electrostatic	potential	along	its	path.		The	proportionality	constant	is	called	 	and	has	σ

Figure	2.		Upper	panels:	electrostatic	potential	inside	a	protein,	smoothed	by	a	10	Å	filter.		
Lower	panels:	simulated	images	of	the	protein	with	0.5	and	2µm	defocus.	

The cryo-EM specimen gives only phase contrast

Unscattered electron 

Scattered electron 

Electrostatic potential

The 200 keV electron (wavelength .025 Å) encounters potentials on the order of 10V when passing 
near a carbon atom. 

A single atom shifts the phase by <1 milliradian.

Figure	1.		An	electron	wave	is	phase-shifted	when	it	passes	near	an	atomic	nucleus	and	is	
“elastically	scattered”.		The	phase	shift	is	wildly	exaggerated	in	this	picture.	
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the	numerical	values	of	0.86,	0.73	and	0.65	mrad/VÅ	for	120,	200	and	300	keV	electrons,	
respectively.		(Those	units	are	milliradians	per	volt-angstrom.)	
	
As	electrons	pass	through	different	regions	the	phase	difference	gives	rise	to	essentially	no	
intensity	difference	in	images	with	a	microscope	that	is	exactly	in	focus.		This	is	why	we	use	
“phase-contrast”	and	“interference-contrast”	devices	on	light	microscopes	to	see	cultured	
cells,	which	are	also	phase	objects.		In	the	EM	the	primitive	way	that	people	traditionally	get	
contrast	is	to	defocus	the	objective	lens,	as	illustrated	in	the	lower	panels	of	Fig.	2.		The	
process	by	which	this	phase-contrast	image	is	formed	is	a	bit	complicated.		One	way	do	
derive	it	is	by	use	of	the	“Fresnel	Propagator”,	the	integral	that	shows	how	wavefronts	
develop	in	free	space.		The	Fourier	transform	of	the	Fresnel	Propagator	yields	the	contrast	
transfer	function	(CTF)	directly,	and	I’ll	put	that	theory	into	the	notes	for	a	later	lecture.		
Another	way	to	derive	it	is	based	on	diffracted	electron	waves,	and	that’s	what	we’ll	
consider	here.	
	
1.		An	overview	
	
Here’s	how	we’ll	proceed	in	the	next	two	sections	to	describe	phase	contrast	by	defocusing	
the	microscope.		We’ll	make	use	of	a	model	object	that	has	just	a	periodic	variation	in	
phase—imagine	ripples	in	a	thin	film	at	the	object	plane	with	periodicity	d.		We	can	use	an	
object	like	this	to	obtain	a	completely	general	result,	because	using	Fourier	transforms	we	
can	decompose	any	2D	distribution	of	density	into	ripples	of	varying	spacing.		Just	below	a	
specimen	like	this	there	is	no	contrast,	because	a	variation	of	phase	doesn’t	change	the	
intensity	of	the	beam.		However,	we’ll	show	that	the	object’s	effect	on	the	propagating	
electron	beam	is	to	produce	two	diffracted	beams,	with	diffraction	angles	depending	on	the	
periodicity	of	the	ripples.		If	we	look	at	a	distance	z	below	the	specimen	the	diffracted	
electron	waves,	because	they	are	traveling	at	angles,	travel	farther	and	have	delayed	phase	
shift	compared	to	the	main,	undiffracted	wave.		If	we	pick	particular	values	of	z	the	
discrepancy	in	phase	shift	is	a	multiple	of	90	degrees,	and	there	will	be	an	optimum	amount	
of	contrast.		The	particular	optimal	z	values	depend	on	the	periodicity	of	the	ripples.		If	we	
set	the	objective	lens	to	focus	an	optimal	distance	z		away	from	the	specimen,	we	will	have	
optimum	contrast	in	the	magnified	image	as	well.	
	

Figure	3.		A	periodic	phase	specimen	gives	rise	to	diffracted	waves.	
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Part	A	of	Fig.	3	above	shows	a	diffracted	wave	(orange)	produced	by	periodic	scatterers	
(red).		In	part	B,	the	two	symmetric	diffracted	waves	interfere	to	produce	positive	contrast	
at	one	distance	(red	circle)	and	produce	negative	contrast	(blue	circle)	farther	from	the	
specimen.	

	
	
	
In	this	derivation	I	make	use	of	two	basic	mathematical	tools.		One	is	the	Taylor	expansion	
for	the	exponential	function	
	 	 𝑒" = 1 + 𝑦 + "'

(
+ ")

*
+ ⋯	

and	similar	approximations	for	squares	and	square	roots;	we	will	be	ignoring	terms	of	
second	order	or	larger;	and	the	other	is	Euler’s	formula	for	the	complex	exponential,	
	

Figure	4.		A	numerical	simulation	of	the	interference	of	200	keV	electron	waves	below	periodic	
specimens	with	d=10	Å(left)	and	7Å	(right).	Note	that	the	vertical	dimension	of	these	pictures	is	
compressed	roughly	50-fold.	
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.	
	

We	also	make	use	of	one	result	from	quantum	mechanics,	which	says	that	the	
intensity	of	a	wave	(or	the	probability	of	detecting	a	particle)	is	the	squared	magnitude	of	
the	wavefunction,	typically	written	|Y|2.	

2.		A	sinusoidal	phase	object.	

Suppose	we	have	a	specimen	that	produces	a	small	phase	shift	of	the	incoming	electron	
wave.		Assume	the	phase	shift	varies	across	the	specimen	in	the	manner	of	a	cosine	
function,	
	

.	 	 	 	 	 (1)	
	
This	“sinusoidal	grating”	is	oriented	along	the	x	axis	and	has	a	period	d.		Its	magnitude	is	
given		by	𝜀,	much	smaller	than	1.		Meanwhile	we	let	the	incident	electron(s)	have	the	time-
independent	wavefunction	
	

Ψ = 𝑒./0	 	 	 	 	 	 (2)	
	
where	the	propagation	constant	 .		Eqn.	(2)	says	that	the	electron	waves	have	
wavelength	 	and	are	propagating	in	the	z	direction.		Just	beyond	the	specimen	the	
wavefunction	reflects	the	phase	shift	of	the	specimen	as	
	
	 	 Ψ = 𝑒.[/023(5)]	

						=𝑒.3(5)	at	z=0+	
	
We	can	approximate	this	by	the	first	terms	of	the	Taylor	expansion	of	the	exponential,	
	
	 	 𝑒.3(5) ≈ 1 + 𝑖𝜙(𝑥)	 	 	 	 	 (3)	
	
which	relies	on	the	assumption	that	 	is	very	small.		This	important	approximation	is	
called	the	Weak	Phase	Approximation.		It	says	that	the	effect	of	introducing	the	specimen—
in	this	case,	a	periodic	change	in	the	electron	wave’s	phase—is	equivalent	to	saying	that	the	
specimen	introduces	a	whole	new	set	of	waves	with	small	amplitude,	superimposed	on	the	
incident	wave.		The	incident	wave	is	unchanged	in	amplitude,	to	a	first	approximation.	The	
fact	that	the	new	wave	amplitude	is	an	imaginary	number	is	a	shorthand	for	saying	that	it	is	
advanced	in	phase	by	90°.		
	
3.		Representation	as	diffracted	waves	
	
The	second	term	in	(3)	represents	a	periodic	set	of	sources	of	new	waves.		The	new	waves	
are	diffracted	waves	of	amplitude	𝑖𝜀/2	that	propagate	at	angles	±𝜃.		The	angles	satisfy	
	 	

.	 	 	 	 	 	 (4)	

	

    

� 

eiy = cos(y) + i sin(y)

φ(x) = ε cos(2πx / d)

k = 2π / λ
λ

    φ(x)

    
sinθ =

λ
d
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(Because	the	electron	wavelength	is	small,	in	practical	situations	𝜃	is	tiny,	at	most	a	few	
degrees.)		At	a	distance	z	below	the	specimen	the	diffracted	waves	have	a	phase	shift	
retarded	by	a	factor	cos𝜃	relative	to	the	phase	shift	𝑘𝑧	that	the	undiffracted	wave	has.	At	a	
distance	z	below	the	specimen	we	have	the	overall	wavefunction	
	
	 	 Ψ(𝑥, 𝑧) = 𝑒./0 + 𝑖𝜙(𝑥)𝑒./0 GHIJ .	 	 	 (5)	
	
Here	I’ve	taken	advantage	of	the	fact	that	the	two	diffracted	waves	combine	to	give	a	
periodicity	in	x	just	like	the	original	𝜙(𝑥).		Factoring	out	𝑒./0	we	have	
	
	 	 Ψ(𝑥, 𝑧) = 𝑒./0K1 + 𝑖𝜙(𝑥)𝑒./0(GHI JLM)N		 (6)	
	
What	interests	us	is	the	intensity	of	the	electron	waves,	which	is	what	is	magnified	and	
transferred	to	the	detector.		Quantum	mechanics	tells	us	that	the	intensity	is	given	by	the	
magnitude	squared	of	the	wavefunction.		The	magnitude	squared	of	the	wavefunction	is	
equal	to	the	sum	of	squares	of	the	real	part	and	the	imaginary	part.	The	magnitude	squared	
of	𝑒./0	is	always	equal	to	1	so	we	can	ignore	that	factor	in	eqn.	(6),	and	the	magnitude	
squared	of	the	rest	is	
	
	 	 |Ψ|( = PReK1 + 𝑖𝜙(𝑥)𝑒./0(GHI JLM)NS

(
+ PImK1 + 𝑖𝜙(𝑥)𝑒./0(GHI JLM)NS

(
	

	
It	turns	out	that	the	imaginary	part	is	very	small,	because	only	the	second	term	involving	𝜙	

contributes	to	it.		That	term’s	magnitude	is	at	most	𝜀	and	its	square	therefore	so	tiny	it	can	
be	ignored.		The	real	part	however	is	on	the	order	of	unity,	and	its	square	is	(using	Euler’s	
formula)	
	 	 |Ψ|( ≈ (1 − 𝜙(𝑥) sin[𝑘𝑧(cos 𝜃 − 1)])(	.	 (7)	
	
Then,	again	neglecting	a	term	of	order	𝜀(	after	expanding	the	square	the	intensity	is	
	
	 	 |Ψ|( ≈ 1 − 2𝜙(𝑥) sin[𝑘𝑧(cos 𝜃 − 1)].	
	
Finally,	we	can	make	use	of	the	fact	that	the	angle	𝜃	is	very	small.		To	second	order	in	𝜃,	
	
	 	 cos 𝜃 − 1 ≈ −M

(
sin(𝜃 = −M

(
𝜆(/𝑑(	

	
And	replacing	 	and	noting	that	−sin(−𝑦) = sin(𝑦)	the	intensity	is	given	by	
	
	 	 |Ψ|( ≈ 1 + 2𝜙(𝑥) sin(𝜋𝑧𝜆/𝑑()		 	 (8)	
	
	
The	contrast	transfer	function	(CTF)	is	defined	to	be	the	scaling	of	the	intensity	change	
relative	to	the	original	phase	shift	in	the	specimen.		We	write	
	 	 	
	 	 |Ψ(𝑥, 𝑧)|( = const + 2	 × 	𝜙(𝑥) 	× 	CTF	
	
where	the	CTF	is	
	
	 	 CTF = sin(𝜋𝑧𝜆/𝑑()	 	 	 	 	 (9)	

k = 2π / λ
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This	function	is	a	very	important	result.		Given	a	phase	object	that	has	a	sinusoidal	variation	
with	period	d,	the	amount	of	contrast	we	observe	in	the	image	depends	on	the	plane	that	we	
have	focused	on.		There	is	zero	contrast	when	z=0	and	also	at	z	values	where	𝜆𝑧/𝑑(	has	an	
integer	value;	there	are	alternating	positive	and	negative	contrast	maxima	in	between.		
Please	note,	as	we’ll	explain	below,	in	practice	we	always	focus	above	the	specimen	so	the	
CTF	as	described	in	the	literature	has	the	opposite	polarity!	

4.		How	does	this	work?	

The	basic	problem	of	EM	phase-contrast	imaging	is	that	right	at	the	specimen,	at	z=0+,	there	
is	no	contrast.		What	the	analysis	above	has	shown,	however,	is	that	beyond	the	specimen,	
at	a	distance	z	displaced	from	it,	there	is	substantial	contrast.	The	contrast	comes	from	
interference	between	the	undiffracted	and	diffracted	beams.		We	have	a	situation	like	that	in	
holography.		There	is	a	reference	beam	(in	our	case,	the	undiffracted	beam)	and	there	are	
diffracted	beams	from	the	object	that	interfere	with	it	to	produce	a	hologram.		So	in	the	
microscope	we	don’t	record	an	image	of	our	specimen,	we	record	an	“in-line	hologram”	of	it.	
	
In	practice	the	necessary	values	of	z	are	remarkably	large	(see	Fig.	4).		Suppose	we	have	a	
specimen	with	a	periodicity	of	d=10Å	that	we	wish	to	image	with	200	keV	electrons	(𝜆 =
.025Å).	The	diffracted	beams	will	make	an	angle	𝜃 = sinLM(𝜆/𝑑),	only	2.5	milliradians,	
because	 =.0025.		The	contrast	is	proportional	to	 ;	the	first	maximum	
occurs	when	 ,	which	works	out	to	z=2000Å.		In	order	to	optimally	image	this	
specimen,	we	would	change	the	objective	lens	current	so	that	its	focus	is	on	the	plane	at	
z=2000Å	away	from	the	specimen.		This	is	very	far	away	from	the	object,	some	80,000	
wavelengths!		The	reason	the	distance	is	so	great	is	that	the	angle	is	so	small,	and	so	the	
difference	in	path	lengths	is	tiny.			
	

Energy	(keV)	 l	(Å)	 	
100	 .03701	 	
120	 .03349	 	
200	 .02508	 	
300	 .01969	 	

	 	 	
Table	1.		Electron	wavelength	at	popular	accelerating	voltages.	

5.		The	Contrast	Transfer	Function,	embellished	

Usually	the	formula	(9)	is	written	in	terms	of	the	“spatial	frequency”	of	the	object	f=1/d.	
Also	in	practice	people	like	to	actually	focus	on	a	plane	above	the	specimen.	The	quantity	
𝛿 = −𝑧	is	called	the	“defocus”	value,	that	is	the	distance	above	the	specimen	that	the	
objective	lens	is	focused.		This	works	fine,	because	as	far	as	the	objective	lens	knows,	it	is	
collecting	electron	waves	that	could	have	started	above	the	specimen!	
	
The	reason	for	focusing	above	the	specimen	is	that	one	gets	stronger	contrast	at	low	spatial	
frequencies.		There	the	phase	contrast	is	negative,	the	same	polarity	as	the	“amplitude	
contrast”	that	arises	from	the	loss	of	electrons	scattered	at	high	angles	from	dense	parts	of	

    

� 

λ/d     

� 

sin(πλz/d2 )
    

� 

λz/d2 = 1/2
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the	specimen.	It	also	works	well	with	the	extra	effects	of	spherical	aberration	of	the	
objective	lens	as	we’ll	describe	below.	The	contrast	mechanisms	work	together	and	we	get	
the	strongest	image.	
	
To	try	to	avoid	confusion	I	will	henceforth	use	𝛿	as	the	"defocus"	or	“underfocus”	value,	
which	is	normally	given	as	a	positive	number.		“Underfocus”	means	turning	down	the	
current	in	the	magnetic	objective	lens,	making	it	weaker	and	therefore	focusing	above	the	
specimen.			
	
We	can	explicitly	include	in	the	contrast	transfer	function	(CTF)	the	amplitude	contrast,	by	
giving	it	a	mixing	angle	 	that	is	typically	around	.05	radians	for	biological	specimens.	
	
	 Finally,	a	correction	to	the	CTF	comes	from	spherical	aberration	in	the	objective	
lens.		Magnetic	lenses	are	terrible,	and	one	of	their	bad	properties	is	that	when	beams	arrive	
at	the	periphery	of	the	lens	they	are	bent	more	strongly	than	they	ought	to	be.		It	is	as	if	the	
focal	length	of	the	lens	decreases	for	rays	at	high	angles	and	therefore	arising	from	high	
spatial	frequency	components	of	the	object.		If	we	focus	above	the	specimen,	the	effect	of	the	
aberration	is	to,	in	effect,	decrease	the	defocus	for	electrons	arriving	at	steep	angles.	This	is	
like	the	problem	of	glass	lenses	that	have	spherical	rather	than	parabolic	curvature:	they	
bend	light	rays	arriving	at	the	periphery	more	strongly	than	they	should.	Magnetic	lenses	
have	nothing	“spherical”	about	them,	but	the	effect	is	approximated	in	the	same	way	by	
what	is	called	the	spherical	aberration	coefficient	Cs,	which	has	units	of	length.		In	the	two	
cryo-EMs	in	our	facility	𝐶g	is	about	2	mm.		With	the	Cs	term	the	contrast	transfer	function	
has	this	form	
	

.	 	 	 (10)	
	
where	the	small	quantity	 	describes	the	degree	of	amplitude	contrast,	that	is	contrast	that	
is	present	with	zero	defocus.		The	Cs	term	only	becomes	important	at	high	spatial	
frequencies,	i.e.	around	3	Å	resolution.	
	

α

    CTF = sin(−πλδf 2 + π
2 Csλ

3 f 4 − α )

α
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Figure	5.	The	𝝌	function	and	the	contrast	transfer	function	at	200	kV	and	defocus	of	about	0.2	µm,	
without	and	with	spherical	aberration	Cs=2mm.		With	this	choice	of	defocus	you	can	see	that	the	
contrast-transfer	function	remains	roughly	constant	over	a	range	of	spatial	frequencies	up	to	a	
resolution	of	about	3	Å	(3.3	nm-1)	because	the	Cs	term	opposes	the	defocus	term.		This	choice	of	
defocus	is	called	the	"Scherzer	defocus".	

	
An	alternative	way	the	CTF	is	described	in	the	literature	is	
	
	 	
	
In	this	notation	the	“wave	aberration	function”	 	is	given	as	
	

	
	
The	first	term	is	the	effect	of	a	perfect	lens;	the	second	is	the	effect	of	spherical	aberration.		
There	are	further	terms	that	you	could	include,	but	they	describe	higher-order	aberrations	
in	the	lens		
that	become	significant	only	at	resolutions	beyond	1	Å.		The	top	of	Figure	5	shows	a	graph	
of	 	as	a	function	of	spatial	frequency.	
	
6.	Envelope	function	
	
A	high	defocus	value	improves	the	visibility	of	your	protein,	because	it	gives	you	more	
signal	in	the	low-frequency	range	that	shows	the	outline	of	the	particle.		But	there	is	a	cost	
in	the	resolution	of	the	images.	It	can	be	difficult	to	undo	computationally	all	the	rapid	
oscillations	in	the	CTF,	for	one	thing.		But	a	physical	limitation	is	quite	serious.		A	defocus	of	
1	µm	means	that	you	are	focused	a	very	long	distance,	(some	400,000	wavelengths!)	away	
from	the	specimen.		Now	suppose	that	the	effective	electron	source	size	is	such	that	some	of	
the	incident	electrons	follow	a	slightly	different	path	than	others.		A	typical	situation	in	a	

CTF = sin(χ −α )

χ

χ = −πλδ f 2 + π
2 Csλ

3 f 4

χ
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microscope	with	a	tungsten	filament	source	would	be	that	the	incident	electrons	follow	
paths	that	differ	in	angle	by	10–3	radians.		These	different	paths	can	blur	out	the	image	of	
high-resolution	features	at	large	distances	from	the	specimen.		The	variation	in	electron	
path	is	called	spatial	incoherence.	
	

	
	

 Figure 6.  CTFs at 0.5 and 1.5µm defocus for 300 keV electrons, with decay at high resolution 
(B=20, 40) typical of a FEG microscope.  Values are plotted up to 0.33 ÅL𝟏, that is to a resolution of 3 
Å. 

	
For	example,	suppose	the	specimen	has	a	periodicity	d	=	1nm.		At	our	defocus	of	1	µm	we	
are	looking	for	differences	in	intensity	with	this	same	periodicity.		But	the	periodic	pattern	
imaged	by	electrons	arriving	at	an	angle	of	10–3	radians	will	be	shifted	by	10–3	x	1µm	=		1nm	
compared	to	the	pattern	imaged	with	zero-angle	electrons.		Thus	if	the	paths	of	the	incident	
electrons	have	random	angles	in	this	range,	the	1	nm	pattern	will	be	completely	washed	
out!		This	is	why	the	field-emission	electron	guns	(FEGs;	found	on	Yale’s	Glacios	and	Krios	
microscopes)	are	so	important:	they	allow	the	effective	electron	source	size	to	be	so	small	
that	angular	spreads	of	10–5	or	10–6	radians	are	attainable,	which	in	turn	allow	high	
resolution	at	high	defocus	values.		Still	there	is	a	decay	at	high	resolution	with	an	FEG,	of	the	
approximate	magnitude	illustrated	in	Fig.	6.	
	
There	is	another	process	that	increases	angular	spread	and	therefore	decreases	spatial	
coherence,	called	“charging”.		When	an	incident	electron	is	inelastically	scattered,	it	
transfers	some	of	its	energy	to	an	electron	of	one	of	the	atoms	in	the	specimen,	typically	
causing	it	to	be	ejected	from	the	specimen.		The	result	is	that	the	specimen	starts	to	take	on	
a	positive	charge.		This	charge,	if	it	is	inhomogeneous	or	if	the	sample	is	tilted,	causes	a	
deflection	of	other	incident	electrons.		This	deflection	has	the	same	effect	as	a	large	source	
size:	it	causes	a	variation	in	the	electron	path	angle,	and	washes	out	fine	details	in	the	
image.	
	
These	mechanisms	both	have	the	effect	of	blurring	the	image.		They	are	typically	modeled	as	
a	Gaussian	decay	of	the	CTF	at	high	spatial	frequencies.		When	we	include	this	term,	which	
goes	by	the	name	envelope	function,	the	CTF	looks	like	
	
	 	 CTF = sin(𝜒 − 𝛼)𝑒Llm'/n	 	 (11)	
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and	B	has	units	of	nm2	or	Å2	and	is	called	the	“B-factor”	or	“envelope	factor”.		Good	cryo-EM	
images	have	B	values	of	50-100	Å2,	but	even	these	values	are	not	so	ideal.		At	B	=	100	Å2	
spatial	frequencies	of	5	Å	are	attenuated	to	1/e	of	their	original	amplitude,	and	higher	
spatial	frequencies	are	attenuated	even	more.	
	
Figure	6	shows	an	example	of	the	complete	CTF	at	two	defocus	values.		The	zero-frequency	
value	is	slightly	negative,	due	to	amplitude	contrast.		The	magnitude	of	the	CTF	oscillates	
but	also	decays	with	frequency,	and	the	decay	is	faster	at	higher	defocus	due	to	the	effects	of	
spatial	incoherence.	
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