Complex numbers
and the complex exponential

Fred Sigworth
Yale University
Why complex numbers?

- Equations are simpler
- Natural for Fourier transforms
- Magnitude and phase of structure factors
i, the imaginary unit

\[i = \sqrt{-1} \]

A complex number \(z = a + ib \)

\[w = c + id \]
Properties of complex numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>(z + w = (a + c) + i(b + d))</td>
</tr>
<tr>
<td>Multiply</td>
<td>(zw = (ab - bd) + i(ad + bc))</td>
</tr>
<tr>
<td>Real part</td>
<td>(\text{Re}(z) = a)</td>
</tr>
<tr>
<td>Imaginary part</td>
<td>(\text{Im}(z) = b)</td>
</tr>
<tr>
<td>Absolute value</td>
<td>(</td>
</tr>
<tr>
<td>Conjugate</td>
<td>(z^* = a - ib)</td>
</tr>
</tbody>
</table>

(Exercise: Show that \(zz^* = |z|^2 \))
The exponential function e^x

\[e = 2.718... \]

\[e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{2 \times 3} + \ldots \]

An important approximation:

\[e^x \approx 1 + x, \quad x \ll 1 \]
The complex exponential

\[e^{i\theta} = \cos \theta + i \sin \theta \]
A plot of $e^{i\theta}$
A plot of $e^{i\theta}$
Any z can be represented as (a, b) or as (r, θ)

\[z = a + ib \quad \quad \quad \quad z = re^{i\theta} \]

- a is the real part
- b is the imaginary part
- r is the magnitude
- θ is the phase

Recall that

\[e^x e^y = e^{x+y} \]

so, when you multiply two complex numbers, the phases add:

\[e^{i\theta_1} e^{i\theta_2} = e^{i(\theta_1+\theta_2)}. \]
Properties of complex numbers

Given
\[z = a + ib \]
\[w = c + id \]

Operations

Add
\[z + w = (a + c) + i(b + d) \]

Multiply
\[zw = (a + ib)(c + id) \]
\[= ab + iad + ibc + i^2bd \]
\[= (ab - bd) + i(ad + bc) \]

Real part
\[\text{Re}(z) = a \]

Imaginary part
\[\text{Im}(z) = b \]

Absolute value
\[|z| = \sqrt{a^2 + b^2} \]

Conjugate
\[z^* = a - ib \]

(Exercise: Show that \(zz^ = |z|^2\))*